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Abstract— In light of growing attention of intelligent vehicle
systems, we propose developing a driver model that uses a
hybrid system formulation to capture the intent of the driver.
This model hopes to capture human driving behavior in a way
that can be utilized by semi- and fully autonomous systems
in heterogeneous environments. We consider a discrete set of
high level goals or intent modes, that is designed to encompass
the decision making process of the human. A driver model is
derived using a dataset of lane changes collected in a realistic
driving simulator, in which the driver actively labels data to give
us insight into her intent. By building the labeled dataset, we
are able to utilize classification tools to build the driver model
using features of based on her perception of the environment,
and achieve high accuracy in identifying driver intent. Multiple
algorithms are presented and compared on the dataset, and
a comparison of the varying behaviors between drivers is
drawn. Using this modeling methodology, we present a model
that can be used to assess driver behaviors and to develop
human-inspired safety metrics that can be utilized in intelligent
vehicular systems.

I. INTRODUCTION

In recent years, there has been a growing interest in intel-
ligent vehicle systems, including advanced driver assistance,
driver monitoring, and autonomous systems [9], [12]. Many
of these systems require a model of the driver, which has
been shown to improve control algorithms and can be used to
avoid safety heuristics [16]. These human centered systems
are going to be increasingly important as more and more
autonomy is introduced onto the roads [13].

In this paper, we consider a driver model that assesses
driver intent to analyze what influences human decision
making while driving. By developing this model, we hope
to achieve two goals: (1) accurately capture a driver’s intent
in dynamic environments (i.e. the road properties and sur-
rounding vehicles) and (2) design a system that is flexible
and portable enough to be used in a variety of applications
(e.g. driver feedback or autonomous decision making). While
humans are prone to distractions while driving [15], we
have many desirable qualities like flexibility, adaptability, and
efficient high level decision making.
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Ideally, an autonomous system would be able to mimic
these positive aspects of drivers while mitigating the draw-
backs, and in doing so would improve social understanding
and acceptance. This is motivated by work in [17], as the
authors demonstrated that sharing a mental model improves
human-robot collaborations. In [5], the authors showed that
intent is directly tied to human motion, which others can
detect and use to anticipate and understand intent; thus
implying that understanding intent is “deeply rooted” to
social interaction.

We propose a hybrid system inspire model that identifies
the intent of the driver, which can be used to assess driver
behavior and/or assist in autonomous decision making in
a heterogeneous environment (i.e. an environment with a
mixture of human driven and autonomous vehicles). In order
to ensure portability of the model to systems with mixed con-
trollers, the detection relies on the sensor measurements of
the environment surrounding the ego vehicle and not directly
on the control inputs or driver state. By using a state of the
art simulator, a dataset is collected with a real-time labeling
system to gather sensor information from the environment
and the humans intent as she drives. Using this dataset, we
are able to analyze the influences on decision making, assess
a driver behaviors in different modes of intent, and develop
an algorithm that can accurately determine the intent of a
driver based on the measurements of a dynamic environment
to fit a hybrid model formulation.

This work is unique from other modeling methods for the
following reasons: (1) a real-time, human labeled dataset of
lane changes is collected, that is better able to capture the
human decision making process and (2) the switching of
modes are determined by the dynamics of the environment to
better encompass the decision making process than previous
methods, that identify modes by heuristics and time.

The paper is organized as follows. In the subsequent
section, we briefly discuss related works. In Section II, we
present our modeling methodology. Section III describes the
experimental setup and Section IV presents the results and
analysis of the data and the corresponding models. Finally,
the results are discussed and summarized in Section V.

A. Related Works

There are many works that consider predicting driver
behavior by monitoring the driver [9], and have shown
promising results in terms of human-in-the-loop and shared
control for semi-autonomous frameworks [16]. When it
comes to driver modeling intent, many rely heavily on the
driver state [7] or on driver input [11]. While effective, these



methods rely on heuristics to determine when a lane change
begins and use windowing to train the classifier [7]. This
ultimately assumes that these high level decisions are made
as a function of time, and not by the dynamic state of the
environment, which is difficult to predict due to the high
variability over long time horizons [16].

One of the desired outcomes of this work is to identify
a model that does not depend on human input and can be
used in human driven or autonomous systems. Ideally, the
model could be used in human-inspired driving applications.
Driving styles in terms of discrete control actions were
mimicked in [3], using inverse reinforcement learning.

By requiring that the human driver explicitly label the
current mode being driven, we can use supervised classifica-
tion approaches to generate system identification parameters
for these modes of intent. The resulting model based on
observations of the surrounding vehicles that can be detected
using current sensor technology, with features similar to the
cues that humans perceive while making driving decisions.
As previously mentioned, this allows the algorithm to be
used as a decision system for an autonomous system or an
assistance system for a human driven or semi-autonomous
vehicle that can effectively function in a mixed environment.

II. METHODS

In this work, we model each mode of intent as a discrete
state, which has a different controller (or control objective)
associated with that mode. As the driver navigates through
the environment, she transitions between the modes of intent,
switching controllers in each mode. We assume that the
switching of modes is only influenced by the state of the sur-
rounding environment (i.e. the driver will not spontaneously
change lanes when there are no other cars nearby).

A. Hybrid System Approach

A hybrid system is a representation of a dynamical system
that has continuous dynamics that depend upon a discrete
state or mode of operation. Suppose we are given the vehicle
dynamics for the ego vehicle, which can be approximated
using a bicycle tire model extended with roll dynamics, as
found in [14]. We compactly represent these dynamics in the
following discretized form:

xk+1 = f(xk, uk), ∀k ∈ N (1)

where xk ∈ Rn is the state of the vehicle and uk ∈ U is the
input from the input space at time k. The following states
are those of interest:

xk =
[
px py vx vy θ

]>
(2)

where px and py are the positions with corresponding veloc-
ities vx and vy , and θ is the heading angle of the vehicle.
We can decompose the dynamics into the following form:

xk+1 = f(xk) + gq(xk, uk), ∀k ∈ N (3)

where all variables are as before and gq(xk, uk) is the control
law that defines the input to the vehicle that changes with the
associated mode q ∈ Q. If human driven, this assumes that

the behaviors or inputs of the driver will change dynamically
based on intent. If semi- or fully autonomous, this algorithm
might update the high level objective, constraints, or cost
function for a control algorithm like model predictive control
or would identify a new target set for control schemes using
motion planning.

We suppose that the vehicle will be acting in a dynamic
environment that will determine the mode of the ego car. In
our scenario, the set of modes Q describe the various “types”
of driving that occur during normal driving. These might
include lane changing, emergency avoidance maneuvers, lane
keeping, etc.

However, as previously stated, we assume that the mode
is determined not by the dynamics themselves, but by the
observable, relative dynamics of the surrounding vehicles,
which can be obtained via sensor measurements that are
updated at each time step. Suppose the sensors map the true
dynamics of the environment to a noisy estimate through
some function h:

ŷik = h(xik) ∀i = {1, . . . ,m} (4)

where xik is the true state (as in Eq. 2) and ŷik is the measured
representation of vehicle i, supposing that we can detect and
measure m vehicles within a predefined radius of the ego
vehicle. Here, we suppose ŷik for i = 1, . . . ,m can be passed
to a detection algorithm, A, to calculate σq ∈ Σ, which is
the set of discrete inputs that detects and signals changes in
the environment that instigate a change of modes. Formally,

σq = A(xk, ŷ
i
k, . . . , ŷ

m
k ) (5)

where all variables are as previously described. Note that A
will compute and select features from the vehicle states, and
will exclude control inputs to maintain flexibility.

B. Modes of Intent

In this paper, we focus on identifying the transitions
between driver intent modes that a driver encounters while
driving. We predefine the modes of behavior, collect the
driver data to build a dataset, and learn the hybrid system
model inspired by human driving.

For simplicity, we examine the scenario of driving in
a two-lane, one way road, in a non-urban setting. We
define three modes: lane keeping, preparing to lane change,
and lane changing. The model is visualized in Figure 1.
While lane keeping and lane changing are self-explanatory,
preparing to lane change can be thought of as the mode
when the driver begins planning to change lanes and is
waiting for the proper moment. This can be thought of as
the moment when the driver turns on her turning signal or
blinker to indicate that she wants to change lanes soon. By
identifying this mode, we inherently have a predictive nature
in the system, by determining the lane change prior to the
manuever actually occurring. But instead of putting a distinct
time stamp on the prediction horizon, we suppose that this
relies on new instances on the environment. In Section IV,
we show the empirical results for the prediction time horizon.



Fig. 1: Illustration of discrete modes in our hybrid model of driver
intent, where we model the transitions as discrete inputs, σq .

We introduce this in-between mode as a precursor to
executing the lane change for two reasons. First, detecting
lane changes from a dataset has traditionally been done by
determining when a lane change occurs by some heuristic
(e.g. when the heading angle passes a particular threshold or
when the vehicle exits the lane). These models look at the
data leading up to this point in order to predict that a lane
change will occur in the next few seconds [7], [11]. This,
however, does not capture the decision making process of
the human, or capture the idea that these decisions occur as
a function of the environment, not just time.

Second, we introduce this in-between state in hopes to
capture the variation that humans exhibit as their intent
change. As humans drive, we are constantly assessing the en-
vironment, and building a mental model of what is happening
around us by determining the intent of other vehicles. While
we often rely on turning indicators or blinkers to convey our
intent to surrounding vehicles, humans can often determine
whether or not a vehicle wants to change lanes without the
signal. If we assume that vehicles are to be integrated into
society, we can assume that they will need to be predictable
and convey their intent to human drivers beyond just using
the indicator.

This is helpful in building our system, because (1) it
mimics the decision making process more accurately by
introducing an intermediary step between the two obvious
actions and (2) it allows the model to vary the amount
of prediction for when the driver would change lanes, by
relying on the state of the environment dynamics, not a
predetermined time horizon.

To learn these transitions or discrete inputs (Eq. 5), we
build a dataset that consists of the environment, as repre-
sented in Equation 4, with corresponding mode labels. De-
tails about the experiments and data collection are presented
in Section III. Since we have collected a set of labeled data,
we may use supervised classification techniques to learn and
analyze the transitions between modes.

C. Features from the Dataset

As described, we were interested in analyzing the effects
of the dynamic environment on driver’s intent and decisions.
Therefore, we utilized the observable and measurable dy-
namics of the surrounding vehicles given current sensing
technology as the starting point of the features. This means
that from a dataset of x and ŷi we generate features with
associated label q ∈ Q, which match the predefined modes.
The distances to the surrounding vehicles are the primary
raw features, as relying on heading angle and inputs would

eliminate the portability of the algorithm.
To make the features robust to changes in position, ve-

locity, and control input, we considered relative positions
and velocities, heading relative to the road, and as well as
two time metrics: time-to-collision (TTC) and time headway
(THW), which are commonly used as a metric for threat and
driver perception [4], as well as the relative TTC and THW,
denoted rTTC and rTHW. These are defined as follows:

TTCi =
di
ve

, THWi =
ve
di

(6)

rTTCi =
di
vi
, rTHWi =

vi
di

(7)

where ve is the speed of the ego vehicle and di and vi are
the relative position and velocity, respectively, to vehicle i.

We define a detection region of 50m for which features of
detected vehicles are included. For consistency, the feature
vector is ordered such that we consider a small grid around
the ego vehicle. The first position corresponds to the vehicle
in front of the ego vehicle and in the same lane. The second
position is the in front of the mid-way point of the ego
vehicle and in the opposite lane. The third and final position
is in the opposite lane as the ego vehicle, behind the mid-
way point. This grid is visualized in Fig. 2a, and is mirrored
when the ego vehicle is in the left lane. If no vehicle is in
range in one of the three defined position, padding is inserted
to maintain ordering1. Using the normalized feature vector
and corresponding labels, we use classification techniques to
identify the driver model.

D. Identifying Transitions

We translate this problem into a classification problem,
assuming we have a complete, labeled data set of driver
behaviors. Formally, we wish to define our algorithm A as a
function that will take the measurements from the environ-
ment, calculate our features, and identify the current driver
mode using a classification algorithm. We present results
using the following techniques: Support Vector Machines
(SVM), Random Forests (RF), and Logistic Regression (LR).

SVM and RF were tested due to their efficiency and
robustness to overfitting. These methods are also logical
choices when finding regions associated with classes or when
identifying separating hyperplanes. LR was tested as it is
the most popular of soft classification algorithms, meaning
it assigns a score or a probability that a sample belongs to
a class given the features. This should be able to capture
the “gray” area that is present in human decision making by
identifying the likelihood or mixture of the modes in a given
sample. For further information, we guide the reader to [10].

1Let it be noted that a variety of feature sets were tested in developing this
model, including sets that were applied to different classifiers based on the
number of surrounding vehicles. We’d also like to note that the modes were
varied, using the three modes presented here but labeled for the left and right
lane, creating a total of six modes. While this showed promising results,
to keep the model simple, we limited the number of modes. Additionally,
preliminary studies show promising results that this can easily be extended
to roads with more lanes and of varying curvature. However, as the scenarios
expand more sufficient data must be collect as well as more modes, so was
not explored here given time constraints.



III. EXPERIMENTAL SETUP

In this section, we describe our experimental setup for
collecting the dataset and the features used to discriminate
modes. When studying human-in-the-loop systems, one of
the challenges is collecting realistic data in a safe manner.
To address this, we have developed an experimental setup for
studying human-in-the-loop systems in vehicles, particularly
in driving applications. The resulting testbed was designed
to be a flexible, realistic platform that allows us to both
observe the driver with monitoring devices, but also control
and measure the environment [8].

Driver data was collected using a Force Dynamics CR401,
a 4-axis motion platform simulator, which recreates the
forces experienced while driving [1]. This system has been
integrated with PreScan software, which provides vehicle
dynamics and customizable driving environments allowing
us to recreate various driving environments needed for data
collection [2]. Using this human-in-the-loop test bed, we
are able to reliably and realistically obtain driver data that
can illustrate the utility of our models and provide useful
motion feedback to the drivers. The motion simulator and
visualization seen by the driver is shown in Fig. 2b.

To set up the experiment, multiple scenarios were created
in which the driver traverses a straight two lane road attempt-
ing to maintain a speed between 15 and 20 m/s. Scenarios
were generated by creating combinations of the simulation
parameters to collected a complete dataset. The following
parameters were varied: (1) the initial speed and lane location
of ego vehicle; (2) the number and location of surrounding
vehicles, varied from one to three; and (3) the initial and
final speed of each surrounding vehicle.

For example, in some scenarios, the lead vehicle would
slow down, forcing the driver to change lanes only if there
was room in the next lane. Thus, the key here is finding
the configurations of the environment states that cross the
boundary or safety margin of the human and allows us to
identify their likely action between staying in the lane (i.e.
braking) or changing lanes to maintain her desired speed.

While driving, the human driver actively labels the data
into classes or modes for the training and testing sets during
the experiment. The driver presses a button on the steering
wheel to signal that she was preparing to change lanes and
then presses a paddle on the steering wheel to indicate
that she was executing the lane change. This allowed us to
separate the data into the modes as previously mentioned.

Five drivers were recruited for this experiment, as a pilot
study and proof of concept. The drivers were asked to drive
for an hour on two separate occasions to collect the data.
An optional practice session was offered, to get the driver
accustomed to the simulator and the data collection method.
The dataset ultimately resulted in about 200 lane changes,
per driver, which was divided into two datasets for training
and testing. We note that some scenarios did not require
a lane change (e.g. the relative speed of the lead vehicle
was initialized such that the driver never felt the need to
overtake them), while other scenarios which heavy traffic

(a) Ordering (b) Test subject driving the simulator

Fig. 2: (a) Illustration of the ordering of feature vector depending
on location of vehicle relative to the ego vehicle (denoted E). (b)
Picture of the driver in the motion platform simulator.

caused multiple lane changes, but varied depending on the
driver’s behaviors in the simulation. The vehicle dynamics,
driver mode, and environment is sampled at the synchronized
rate of 60 Hz.

IV. RESULTS

In this section, we examine the influence of the features
on driver behavior and describe the models developed from
the aforementioned algorithms.

A. Analyzing Driver Behaviors

From this dataset that describes driver intent, we are
able to visualize the variability in human driving and gain
insight to the connection between a driver’s perception of
her surrounds to her discrete state of intent. This data can
also verify the utility of introducing the preparing to lane
change mode; the advantage of the human active labeling
method over the traditional heuristic labels and windowing;
and compare the differences in behaviors between drivers.

To justify separating the lane keeping modes into two
modes, we consider the distribution of lateral deviations from
the center of a lane, which is assumed to be the driver’s
internal goal in this mode. We observe that drivers tend to
distribute themselves closer to the center lane and are more
likely to edge away from traffic when simply lane keeping,
and move toward next lane when preparing to lane change.
The empirical distributions of these behaviors are shown in
Figure 3 2.

To analyze the behavior in modes and across drivers, we
also consider the time spent in the prepare mode, TP , as
well as the time difference, ∆T , between when the instance
that human identified a mode transition and the instance that
the lane change occurred according to a baseline heuristic,
which was determined as the time the bounding box of the
vehicle exited the lane. This evaluation is presented in Figure
4 for a single driver.

By visualizing these time metrics, we observe that the
time between modes varies a great deal, implying that the
decision making process does not solely depend on time, but
on the dynamics of the environment. This also empirically
shows the predictive capability of this model, showing that

2The subsets of the data were compared using the two-sample
Kolmogorov-Smirnov test to see if they came from the same distribution.
The hypothesis was rejected with p� 0.01.



Fig. 3: Empirical probability density functions that describe the
different driving behaviors exhibited in the similar, yet distinct, lane
keeping and preparing to lane change modes, for a particular driver.
This data consists of data from the right lane, but we noted similar,
but reflected behaviors, in the other lane.

Fig. 4: Empirical probability distributions showing our time anal-
ysis metrics, where TP is the time spend preparing to lane change
and ∆T is the change in time from when the driver entered the
specified mode compared to the baseline. The mean and standard
deviations for all drivers are shown in Table I.

TABLE I: Results from the timing analysis and the TTC and THW
metrics are presented, showing the mean and standard deviation of
the means for all subjects. Subscript P denotes result for prepare
mode and LC denotes lane change mode.

Metric Mean (s) St. Dev. (s)
TP 3.05 0.29
∆TP 2.66 1.17
∆TLC 1.52 0.28
TTCP 1.34 0.17
TTCLC 1.20 0.14
THWP 0.80 0.11
THWLC 0.96 0.12

we are able to predict the intent of the vehicle, prior to the
maneuver actually occurring. Similarly, the TTC and THW
metrics can also be analyzed to identify the typical thresholds
for the mode transitions as labeled by a driver. The averages
for the timing metrics and these features for all subjects are
presented in Table I.

B. Model Performance

It is worth noting that we cannot expect a perfect model,
as there is uncertainty near the boundaries of the human’s
decision making process and noise in the actual labeling
of data. Thus, errors will likely occur at the boundaries,

Fig. 5: Plot showing the accuracy for each of the five subjects.

TABLE II: This table presents the overall model accuracy (in %)
and the accuracy in different scenarios, denoted Scen. i, where i
indicates the number of vehicles in a 50m radius of the ego vehicle,
for a particular driver only on the test dataset.

Method Overall Scen. 1 Scen. 2 Scen. 3
SVM 89.5 88.5 85.9 92.1
RF 88.9 86.6 85.9 91.7
LR 87.2 86.1 85.4 88.7

Fig. 6: Confusion matrices showing normalized accuracy results,
on the test dataset for a given driver. Entry i, j shows the ratio of
samples that are from mode qi, but predicted by the algorithm to
be qj . Accuracy is labeled and denoted by the color, where white
indicates 100% and black indicates 0%.

but we expect the model to identify the optimal separating
hyperplane to balance the noisy data.

By using the obtained parameters from cross validation3

and applying the generated classifiers to testing data to vali-
date the model, we obtain the performance results presented
Figure 5. The results for a sample driver are shown in Table
II. The accuracy is presented as the overall accuracy, and by
scenarios that are defined by the number of vehicles in the
immediate vicinity of the ego vehicle.

We can see that the generated classifiers determines the
driver mode with relatively high accuracy, despite the un-
certainty that is inherent in human actions. To visualize
the classification accuracy without biases in the number of
instances, the confusion matrices showing the normalized
results are shown below in Figure 6.

As shown, this methodology shows promising results for
identifying a hybrid model of an individual driver’s decision

3This was completed using the leave-k-out method. SVM was imple-
mented using LibSVM [6], using the radial basis function kernel (the
parameters for which were found in cross validation), and one-against-one
method for multi-class classification. In RF, the number of trees was swept in
cross validation. LR relied on the logit link function to identify the nominal
model. Details for these methods can be found in [10].



making process. The following observations were made:
1) SVM: We note that it is generally conservative, tran-

sitioning from the lane keeping modes later than the other
methods, but is still able to predict lane changes prior before
the maneuver occurs. This method also provides smoother
transitions than the other methods. This is to be expected
given the method SVM balances the separating hyperplanes
with the noisy labels.

2) RF: This classifier can accurately distinguish the be-
havior modes, but is not always smooth about the borders,
which is intuitive due to fine parsing the algorithm exhibits
when identifying the separation boundaries. While in theory
this method is robust to overfitting, we noted that this method
performed best in instances most similar to the training set.
This implies that this method is more reliable under distinct
operating conditions and does not generalize as well as SVM.

3) LR: The accuracy of this method was determined by
using the most likely mode as the classification. While it can
be seen that this method produced relatively low accuracy,
it is interesting as it shows the modal mixtures near the
transitions between modes as shown in Figure 7.

Fig. 7: Example illustration of how the logistic regression changes
over the execution of a lane change, where the shaded regions show
the actual mode, and the lines show the probability of a mode
conditioned on the input features at that timestep.

4) Overall Performance: We note that the accuracy of
the classification varies a great deal between subjects, which
is likely due to the inaccuracies of human labeling and the
nature of human decisions. When the data is combined in an
attempt to generate a global model for all drivers, extremely
poor performance was found. This is likely due to the fact
that the internal decision making process is highly specific
to the individual–especially when considering decisions like
preparing to take an action, which if removed might produce
better results. However, bounds on behaviors can still be
identified for general use. If this method were to be used
in practice, an expert driver would be selected (i.e. one
that generates a reliable model). This expert could be used
as a standard to compare other drivers’ behaviors to or to
generate a high level control algorithm for use in semi- or
fully autonomous vehicles.

Additionally, no windowing was used, although it is com-
mon practice in similar studies (see Section I-A). While this
might improve accuracy, it was decided that using minimal
features was desirable, to maintain flexibility and eliminate
reliance on the trajectories generated on the simulator.

V. DISCUSSION

We have compiled a dataset of human labeled lane changes
and developed a hybrid mental model to mimic a driver’s
decision making process, by learning a detection module
to identify the separating hyperplane between driver modes.
This model is unique as it provides a robust classification
of human decisions assuming that the transitions are not
determined by time, but by the dynamic environment. The
models have been shown to be highly robust to variations in
the environment and exhibited high accuracy. Future work
consists of expanding the dataset to consider more scenarios
and more complex and uncertain environments. Also, there is
a great deal of consideration that must go into demonstrating
the feasibility of the model, as it was constructed in a
simulated environment. Thus, verifying the methodology on
real-world data must be explored. We would also like verify
the generalizability and portability to other vehicles and work
towards implementing this work as a high-level controller for
autonomous systems in heterogeneous environments.
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