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Abstract— In order to develop provably safe human-in-the-
loop systems, accurate and precise models of human behavior
must be developed. Driving is a good example of such a system
because the driver has full control of the vehicle, and her
likely actions are highly dependent on her mental state and the
context of the current situation. This paper presents a testbed
for collecting driver data that allows us to collect realistic
data, while maintaining safety and control of the environmental
surroundings. We extend previous work that focuses on set pre-
dictions consisting of trajectories observed from the nonlinear
dynamics and behaviors of the human driven car, accounting for
the driver mental state, the context or situation that the vehicle
is in, and the surrounding environment in both highway and
intersection scenarios. This allows us to predict driving behavior
over long time horizons with extremely high accuracy. By using
this realistic data and flexible algorithm, a precise and accurate
driver model can be developed that is tailored to an individual
and usable in semi-autonomous frameworks.

I. INTRODUCTION

There are number of ways to approach safety when con-
sidering safety in human-machine interaction. Some robotic
systems approach safety from a mechanical point of view
by creating systems that physically cannot harm the human
[6]. Another approach is to develop controllers and sensor
systems that can guarantee safety for a given system [15].
However, when considering systems that involve or interact
with humans (called human-in-the-loop systems), deriving
safety boundaries is not a simple task. Human actions
and behaviors are often unpredictable and cannot easily be
described by normal dynamical methods. Therefore, in order
to develop provably safe human-in-the-loop systems, first
a useful model of the human must be developed that can
be incorporated into a safety algorithm for semiautonomous
control. In this paper, we consider driver behavior. This
application is a key example as the driver has full control
of the system, and her likely actions are highly dependent
on her mental state and the context of the current situation.

It is well-known that while humans have many innate
skills that make them adept at driving (e.g. flexible and
adaptable to new situations, good at decision making), they
are fallible and prone to error. In fact, according to a 2008
study, 93% of car crashes are due to human error. On top of
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that, studies show that at any given moment in America,
approximately 660,000 drivers are using cell phones or
another electronic device while driving, even though doing
so increases the risk of getting into an accident by three times
[1], [28]. This has brought rise to a great deal of research
in driver modeling and autonomous vehicles to mitigate or
hopefully eliminate these collisions [2]. Additionally, many
semiautonomous and human-in-the-loop systems are being
developed as many believe that autonomous vehicles should
be introduced incrementally [16].

One example of a successful semiautonomous system that
uses a reachable set methodology is the Volvo City Safety
system. When driving in the city (below 35 miles per hour),
the system calculates the reachable set of the vehicle for the
future 500ms and predicts collisions by checking to see if a
detected object is within that set [11]. As noted, this method
does not work at high speeds as the reachable set of the
vehicle itself becomes too large, leading to an overly invasive
system. When considering high speeds, the human can no
longer be considered as a disturbance in the system, as the
driver has significant influence over the future trajectories of
the vehicle. Ideally, the system would function at high speeds
and consider the likely actions of the human by modeling the
driver to create a more informative reachable set.

Modeling the driver has been considered by a variety of
communities, ranging from the human factors to computer
vision. The human factors and psychology community have
focused on quantifying the amount of attention required for
driving and level of distraction for different tasks during
driving [7], [24]. Other communities have used a variety of
sensors: eye and facial trackers [8], [20], [30], body sensors
[26] or other sensors to predict driver intent [12], [14]. In
[9], intersection data was collected from traffic to design
driver assistance systems, but no individualized models were
created. However, these modeling methods fall short of easily
being employed in a control framework.

We propose the use of a driver model that incorporates
knowledge of an individual driver’s likely set of actions to
create a set of likely states the driver will visit, to minimize
the amount of intervention by an active safety system, as
first described in [29]. In this paper, we introduce a new
experimental setup that allows us to collect realistic driver
data that can be used to create a model of the human mental
state, in a safe manner. We hypothesize that by incorporating
a mental model of the human and by developing a context
aware system, we can better predict driver behavior and
thus create a better active safety system. This system can
be tailored to a specific driver, and if highly precise, it can
be less invasive, while maintaining accuracy.



The work here expands upon the data-driven methodology
presented in [27] by creating a more precise and accurate
model of human driving behavior. Our contributions include
(1) using a human-in-the-loop testbed to collect realistic driv-
ing and mental state data; (2) enhancing the existing driver
modeling algorithm with improved results; and (3) extending
the model to consider intersection scenarios in addition to
highway driving. We relax some of the assumptions from
previous work on the underlying model of the vehicle, by
including all inputs (steering, throttle, and braking) into the
model. This creates more variability in the predictions, as we
consider nonlinear behaviors of the human inputs.

The paper is structured as follows. In Section II, we will
present our methods and its advantages over other methods.
The setup and execution of the experiments will be described
in Section III. Section IV will present our metrics and results
for analyzing our system when considering highway driving.
Section V will present an extensions of this algorithm to
intersection behaviors. While this work focuses on the de-
velopment of the human model, the methods for applying the
model are discussed in Section VI. Finally, we will conclude
with a discussion of the results and of the future works.

II. METHODOLOGY

The following section will introduce the formulation and
implementation of the proposed model. In this work, we
are interested in the driver modeling that will influence the
control. Refer to [27] for the larger control framework which
this driver model can be applied.

A. Modeling Human Behavior

In this subsection, we provide a mathematical formulation
of the driver model. We denote the past observed information
with O and the information at the current time with I.

Existence of a Driver State Function: Suppose in the cur-
rent information set, we are able to obtain driver monitoring
data such that:

θ : O × I → Q (1)

where Q is our set of discrete mental states that the driver
could be in. In this work, we assume this set of mental
states to be attentive, partially attentive, and distracted.
This is similar to work in psychology and discrete event
systems, which identifies tasks to have no, low, or high
mental workload or cognitive distraction, and adjusts based
on discrete mental modes [19], [22].

Existence of Distinct Driver Modes: Given that driver
behavior heavily depends on context and mental state, we
assume that there exist distinct driver modes that depend
on this information. As was previously mentioned, we are
interested in long time horizon trajectory predictions that will
encapsulate the uncertainties and the bounds of the potential
future states of the vehicle. This is described as follows:

argmin
∆⊂Rn

|∆|

subject to Pθ(O,I) [(X(k)− x0) ⊂ ∆|O, I] ≥ α
∀k ∈ {0, . . . , N}

(2)

Fig. 1: A flow diagram of the parsing used to identify the driver
modes.

where X is the random variable representing the future ve-
hicle trajectory, x0 ∈ Rn is the initial position, N is the time
horizon, Pθ is the probability distribution on the trajectories
given the driver state and the information sets, and ∆ the
minimum area set that contains the future trajectory of the
vehicle with at least probability α ∈ [0, 1]. This can be
interpreted as the α-likely reachable set of the vehicle given
the past and current information we have observed from the
driver. The output of this optimization program at time k
return a set that has a probability distribution that will be
referred to as ∆k(O, I, α).

B. Model Implementation

In this subsection, we describe how we implement the
driver model described in Section II-A. Rather than making
assumptions on human behavior and fit Pθ to a known proba-
bility distribution, we estimate an empirical distribution from
the observed data. Here, suppose that for a given context
and environment observations, there are distinct modes of
behavior. While we assume that the level of distraction and
context are known (i.e. we have full knowledge of θ and
know when the vehicle is on a highway or approaching
an intersection), identifying a mode associated with the
environment constraints is more difficult. These constraints
are related to the road boundaries and curvature and the
surrounding obstacles. We uncover the modes of the envi-
ronment from sensor data using the k-means algorithm on
observed scenario data [17]. This environment representation
also includes the level of traffic and relative states via sensing
the surrounding vehicles.

The sensors chosen to collect environment data mimic
current commercially available sensors such as front and side
radar and lane detection modules [4]. Using the front and side
radar, we detect the number of obstacles in the vicinity of
the ego vehicle and observable states (i.e. relative position
and velocity), relative to the ego vehicle. The lane sensors
allow us to extract future road bounds.

To create a context aware system, we implement a hi-
erarchical algorithm with the levels as shown in Figure 1.
The first two levels determine driver mode using the driver



Fig. 2: Diagram showing the transitions between mental states
when distractions or actions occur.

mental state (described in Eq. 1 and shown in Fig. 2) and
context (e.g. approaching an intersection, position on the
road, etc.), which provide insight to the future trajectories of
the vehicle. For instance, drivers behave differently during
city driving than highway driving and drivers demonstrate
different behaviors when in the right or left lane of a two
lane road. By parsing the data based off of these detectable
contexts, we hypothesize that the system will be able to
more accurately identify driver modes. This is a significant
improvement to the model proposed in [27] which uses k-
means on a time-series vector of driver state, context and
environment.

To summarize the algorithm, driver data is parsed using a
decision tree-like method. The first level utilizes the driver
state and the second utilizes the position of the car on
the road. The final level is dictated by which cluster the
observed surroundings belong to. By separating the training
data in this manner, we then build predictive sets using the
future observed trajectories at each instance of this mode,
effectively linking the dataset to the current point in time.
From these sets, we can calculate an empirical probability
distribution for future trajectories and inputs. In essence,
this model answers the question: given the context and the
driver’s mental state, what has the driver done in the past?

III. EXPERIMENTS

In this section, we describe the simulator and experimental
setup. A challenging component of studying human-in-the-
loop systems is collecting data, especially when safety is of
concern. To address this, we have developed an experimental
setup for studying human-in-the-loop systems in vehicles,
tailored toward driving applications. The testbed was de-
signed to recreate the feeling of moving in a vehicle and
is equipped with monitoring devices to observe the human.

Driver data was collected using a Force Dynamics CR401,
a 4-axis motion platform simulator, which recreates the
forces experienced while driving [3]. This system has been
integrated with PreScan software, which provides vehicle
dynamics and customizable driving environments [5]. In
addition, this testbed is equipped with driver monitoring
devices to sense and observe the driver state [13]. Using
this human-in-the-loop testbed, we are able to reliably and

Fig. 3: Picture of test subject driving the simulator.

Fig. 4: PreScan simulation environment from the driver’s perspec-
tive.

realistically obtain driver data that can illustrate the utility
of our models and provide useful motion feedback to the
drivers. Evidence of the utility of motion simulators are can
be found in [18], [21]. The simulator and visualization seen
by the driver is shown in Fig. 3 and Fig. 4, respectively.

Thirteen subjects between the ages of 21 and 36 were
recruited to test this prediction algorithm for highway and
intersection scenarios. The intersection model is presented in
Section V. For the highway scenario, subjects were asked to
drive on four courses each lasting twenty minutes to generate
three training sets and one test set. These courses consisted of
two lane roads with turns of various curvatures, with different
levels of traffic that moved independently of the ego vehicle
with no opposing traffic. On these courses, the drivers faced
a number of obstacles, some that were static (e.g. trailers in
the road, cardboard boxes, etc.) and others that were moving
(e.g. balls rolling in the road, other vehicles, etc.). The driver
was asked to drive as they would normally at about 50 mph.
The final test course consisted of obstacles and road patterns
that had not been experienced in the training set, to verify
the flexibility of the model. The top views of the courses are
illustrated in Fig. 5.

To simulate distraction, the driver was given an android
phone with a custom application to randomly ping the
driver to respond to a text message 30-60s after the driver
responded to the previous text. The application also recorded
phone acceleration and touch to determine when the driver
state in real time [13]. A few example questions are provided
below:

1. What did you have for lunch today?
2. What is your major?
3. Where are the Olympics this year?

To determine the driver state, we assume that the driver is
attentive when there is no distraction, partially distracted
after the phone rings and she considers answering, and fully
distracted when she is physically typing on the phone.



(a) Training Course 1 (b) Training Course 2 (c) Training Course 3 (d) Test Course

Fig. 5: Training and test courses used to build the data sets.

IV. EVALUATION

In this section, we describe the metrics used to evaluate
the model and results on the above experiments.

A. Model Metrics

Before presenting the results, the evaluation techniques
will be briefly described. Since we are considering a set
prediction for the driver model, there is a trade-off between
the precision and the accuracy. To clarify, if we were only
interested in a model with high accuracy, then the reachable
set of the car would suffice. However, this does not provide
us any useful information into what the driver is likely to do.
Therefore, we define accuracy as the number of samples that
fall within the boundaries of the set (Eq. 3) and precision as
the area of the set relative to the size of the reachable set
(Eq. 4). More information about these metrics can be found
in [27]. These metrics are formally defined as follows:

A =
1

M

M∑
i=1

N∏
k=0

1 {(xi(k)− xi(0)) ∈ ∆k(O, I, α)} (3)

where M is the number of observed trajectories, xi,N (k) is
the state of vehicle of the ith trajectory at time k, and 1 is
the indicator function.

P = max

{
1− 1

M

M∑
i=1

∣∣∪Nk=0∆k(O, I, α)
∣∣∣∣∪Nk=0R(k, I)

∣∣ , 0

}
(4)

where R(k, I) is the reachable set beginning at xi(0), for a
constant velocity. For a given mode, the median velocity of
the associated set of observed trajectories is used. Since we
consider the reachable set for a constant velocity (meaning
there is no throttle input), it is possible that the predicted
set is larger than the reachable set used for comparison. The
precision is set to zero if this occurs, the prediction is deemed
less useful than the standard reachable set.

B. Highway Experiments

We evaluate this metric at various time horizons T =
{0.5, 1.0, 1.2, 1.5, 2.0} seconds. For comparison, we com-
pare these results to the reachable set (denoted RS) of the
vehicle, which is always accurate, but lacks precision. The

accuracy and precision metrics versus the number of clusters
are shown in Tables I and II, respectively. These results are
the averaged metrics for each of the individualized models.

From these results, a few key observations can be made.
As expected, the accuracy decreases over time. This can
partially be explained by the uncertainty of the environment,
which can drastically change over the course of two seconds.
Therefore, this model is best used at a time horizon of 1 to
1.5s. Also note that the accuracy decreases as a function of
the number of clusters. Here, we note the trade off between
the precision, which improves with an increase in clusters.
This intuitively makes sense, as we finely separate the data,
we expect smaller set predictions, sacrificing the accuracy of
the model. When the environment is ignored, meaning only
a single cluster is used, precision is completely lost. This
implies that the environment must be taken into consideration
for useful prediction.

It can be seen that for a time horizon of 0.5s, the driver
model has zero precision. This implies that when considering
a short time horizon, the directly using the reachable set is
justified. However, when predicting over long time horizons,

TABLE I: Driver Model Accuracy Results, where k is the number
of clusters used and RS denotes the reachable set.

Method 0.5 s 1.0 s 1.2 s 1.5 s 2.0 s
RS 1.000 1.000 1.000 1.000 1.000
k = 1 0.998 0.998 0.998 0.998 0.967
k = 5 0.993 0.992 0.992 0.991 0.894
k = 10 0.985 0.983 0.982 0.981 0.818
k = 15 0.961 0.959 0.958 0.956 0.757
k = 20 0.955 0.952 0.950 0.948 0.721
k = 25 0.925 0.922 0.920 0.916 0.676
k = 30 0.911 0.908 0.906 0.902 0.642

TABLE II: Driver Model Precision Results, where k is the number
of clusters used and RS denotes the reachable set.

Method 0.5 s 1.0 s 1.2 s 1.5 s 2 s
RS 0.000 0.000 0.000 0.000 0.000
k = 1 0.000 0.000 0.000 0.000 0.000
k = 5 0.000 0.000 0.087 0.244 0.337
k = 10 0.000 0.182 0.336 0.457 0.528
k = 15 0.000 0.313 0.447 0.551 0.613
k = 20 0.000 0.400 0.521 0.614 0.671
k = 25 0.000 0.458 0.570 0.657 0.709
k = 30 0.000 0.488 0.596 0.679 0.729



the model is becomes more useful than the alternative. The
trade-off between accuracy and precision is visualized in
Fig. 6, which shows both metrics versus the number of
environment clusters used.

Fig. 6: Plot illustrating the trade-off between accuracy and preci-
sion as the number of clusters increase, when T = 1.0, 1.2, 1.5,
and 2.0s.

Once these sets are created, the empirical probability
distributions can be derived to show the likelihood of the
trajectory sets over time. Example sets and their distributions
are visualized in Figure 7.

V. EXTENSION TO INTERSECTIONS

In this section, we describe an extension to the model on
city driving with intersections. At intersections, we assume
knowledge of the driver intention to turn or drive straight,
similar to if the driver where to obey navigation commands
from a Global Position System navigation device.

A. Model Extension Formulation

The model proposed in Section II-B easily extends to
intersection with some slight modifications to the context
detection level. In the context detection level of the decision
tree, we detect if the driver is driving on a straightaway
or approaching an intersection, which is defined as being
within a distance r of the intersection. In the model presented
here, we set r = 60m. This is then conditioned on the
status of the intersection (e.g. stop sign, traffic light), which
would influence the behavior. We include the status of the
traffic light for the previous two seconds in the feature
set. The model considers the following four scenarios: (1)
approaching a stop sign with the intent of continuing straight;
(2) approaching a stop sign and turning right; (3) approaching
a traffic light; and (4) city driving.

Since the time scale at which events occur in city driving,
this model is formulated to test for a 5 second prediction,
tested in 1 second increments. Generally, accurate and pre-
cise predictions over such long time horizons are extremely

(a) Example set for attentive driver on a straight road.

(b) Example set for distracted driver on a slightly curved road.

Fig. 7: Visualization of prediction sets for an individual driver
(k = 20), where the probability distribution is plotted over ∆x and
∆y, representing the longitudinal and latitudinal change in position
in meters. The dark red regions represent areas of high probability
and darker blue regions represent low probability.

Fig. 8: Course used to build the intersection model.

difficult if not impossible due to the potential changes in the
environment. However, this long time horizon allows us to
analyze the entire execution of a maneuver that might occur
at an intersection.

B. Experimental Setup

The course for this extension is shown in Fig. 8, where
the training and testing data was completed in the same
road configuration, with different traffic flows, obstacles, and
environmental distractions. The driver was asked to navigate



TABLE III: Intersection Model Accuracy Results, where k is the
number of clusters used and RS stands for the reachable set.

Method 1 s 2 s 3 s 4 s 5 s
RS 1.000 1.000 1.000 1.000 1.000
k = 1 0.999 0.998 0.997 0.997 0.967
k = 5 0.993 0.990 0.986 0.984 0.912
k = 10 0.986 0.981 0.976 0.973 0.874
k = 15 0.979 0.972 0.966 0.961 0.835
k = 20 0.974 0.965 0.959 0.952 0.797
k = 25 0.969 0.958 0.951 0.944 0.772

TABLE IV: Intersection Model Precision Results, where k is the
number of clusters used and RS stands for the reachable set.

Method 1 s 2 s 3 s 4 s 5 s
RS 0.000 0.000 0.000 0.000 0.000
k = 1 0.868 0.894 0.844 0.704 0.00
k = 5 0.865 0.858 0.855 0.833 0.00
k = 10 0.898 0.899 0.898 0.883 0.529
k = 15 0.933 0.930 0.927 0.912 0.382
k = 20 0.948 0.948 0.944 0.927 0.470
k = 25 0.966 0.967 0.9607 0.941 0.531

the loop of intersections by driving as they would normally
at about 25 mph while stopping at stop signs and at traffic
lights, as one would in city driving for half an hour. It was
noted that the drivers generally respond to the texts while
stopped, so the driver state was excluded in this section.

C. Results

We present the evaluation of this model using the metrics
in Section IV-A. The accuracy and precision results are also
shown in Table III and IV, respectively. A visualization of
the predictions sets for intersections are shown in Figure 9.

From these metrics, a similar relationship between preci-
sion and accuracy can be observed as before. The accuracy
for this model is quite high. This was expected from the data,
as it was observed driver behaviors are more consistent and
spontaneous behavior is less likely to occur (e.g. a driver will
change lanes with very low probability when approaching an
intersection, in our dataset).

This formulation also allows us to closely examine the
control aspect of the human when approaching the intersec-
tion. Using the driver’s inputs to the vehicle, we can build an
empirical probability distribution similar the trajectory sets
previously presented to consider driver behaviors in terms of
control. An example of this is illustrated in Fig. 10. Because
we are directly observing the human behavior and creating
the boundaries based of these observations, the predicted sets
are not necessary smooth, however realistic and accurate.

VI. APPLYING THE MODEL

As was discussed in Section I, accurate and precise models
of human behavior are crucial for human-in-the-loop systems
for developing provably safe control mechanisms or giving
feedback to the driver. This model is able to identify the
likely set of actions, which can be thought of a highly
probably reachable set. This set formulation also allows us
to examine the varying behaviors of people depending on the

(a) Example set when approaching a stop sign.

(b) Example set when turning.

Fig. 9: Prediction set for intersection model, where r = 50m and
k = 5. The probability distribution is plotted over ∆x and ∆y,
representing the longitudinal and latitudinal change in position in
meters. Dark red areas represent high probability and dark blue
represents low probability.

Fig. 10: An example set of driver’s inputs when approaching a
stop sign, associated with the trajectory set in Fig. 9a.



context in a quantitative manner. Using this empirical model,
we can quantify the likelihood of “good” driving behavior,
as was shown in [25]. This is valuable as the driver would
be able to receive useful feedback on their regular driving
behaviors and can be used to develop a provably correct
controller.

In addition, this model can be incorporated in a semi-
autonomous framework. There are two main control frame-
works in which this model will easily integrate: switched and
augmented control. Consider the following vehicle dynamics:

x(k + 1) = f(x(k), u(k)), ∀k ∈ N (5)

where x(k) ∈ Rn is the state at time k, u(k) ∈ U is the
input to the vehicle at time k where U ⊂ Rm is a compact,
connected set containing the origin, and the initial state of
the car, x(0), is given.

Suppose that given I, the unsafe regions of the environ-
ment can be estimated, denoted as C. It is assumed that for a
given fixed time horizon, N ∈ N, and a given cost function,
there exists an optimal control algorithm that is able to keep
the vehicle outside the unsafe set. This assumption can be
satisfied by model predictive control (MPC) [10].

Ideally, the optimal semiautonomous system would be
minimally invasive. Using this model, determining when
the system should intervene can be calculated using the
following probabilistic intervention function, denoted G:

G(α, τ,O, I) ={
1 if ∃k s.t. P [∆k(O, I, α) ∩ Ck(I))] ≥ τ
0 otherwise

(6)
where k ∈ {0, . . . , N} represents the time step in the
time horizon N , ∆(k, α,O, I) refers to the probability
distribution on the set of α probable trajectories at time k as
defined in Eq. 2, C(k, I) is the unsafe set given the current
information I, and τ ∈ [0, 1] is a predefined threat threshold.
This means that the vehicle intervention function is 1 if the
probability of the α probable trajectory set intersecting with
an obstacle at any time k is greater than the threshold τ ,
indicating that the driver is unsafe.

This framework allows for the uncertainty of modeling
and prediction to be incorporated in the threat assessment of
the driver in a particular situation. By using the intervention
functions, a decision can be made by the semiautonomous
system as to whether or not control should be applied. As-
suming the prediction is accurate and has good precision, the
system will intervene only when necessary leading to fewer
interventions than a simpler method using the reachable set
of the vehicle.

Switched Control: The most obvious method of semi-
autonomous intervention is switched control. By this, it
is meant that if the system detects danger for the driver,
complete control will be taken from the driver, operating
under the assumption that the system can outperform the
driver. In the framework presented here, the controller would
take over whenever the intervention function was set to 1.

There are a number of issues that arise from this method.
The most prominent issue is dealing with handing con-
trol back to the human. This is an interesting engineering
question, but also has some implications for human factors
and psychology, concerning how a driver will react to the
intervention and determining when it safe to hand control
back to the human.

Augmented Control: Instead of completely relieving the
human of his duties as driver, augmented control adds
the minimum amount of control to the driver’s input to
keep the driver safe. The augmented control is always on,
removing the need to switch between autonomous and human
control. The simulation described in the experimental setup
also tested an augmenting control strategy using MPC. The
controller algorithm runs in real-time to minimize a quadratic
cost function as well as the following minimization problem:

minimize δu2

subject to G(α, τ,O, I) ≤ 0
x(k + 1) = f(x(k), udm(k) + δu(k)),

∀k = {0, . . . , N}

(7)

where all variables are as before and udm is given by the
driver model. This minimization problem adds the minimal
input needed to keep the driver safe. This method has
been implemented in a real-time framework and has shown,
promising and successful results [27].

VII. CONCLUSION

The contributions of this paper extend previous work
by developing a realistic testbed for data collection, and
increasing the utility and accuracy of this driver modeling
method. In addition, we relax some of the assumptions on
the underlying model of the vehicle, by including all inputs
(steering, throttle, and braking) into the model. This creates
more variability in the generated prediction sets, as we
consider nonlinear behaviors of the human. Regardless, this
implementation of the model exhibits comparable precision
and significantly improved accuracy. The accuracy of the
previous model ranged from 79.2% to 92.0% at 1.2 second
time horizon.

By developing this testbed and this extended algorithm,
we are able to collect realistic driving data and accurately
predict driver behavior. This experimental setup is unique in
that it allows us to collect data for and test human-in-the-
loop systems, while maintaining safety measures and control
of the environmental surroundings. This aids in creating a
robust system as we can push the data collection to the
search out corner cases or infrequent events that often arise
in driving scenarios. By creating a flexible, context aware
system, the identification is limited to regions that it has seen
before yet is flexible enough to handle variances in scenarios.
As was shown in [27], this formulation can be used in a
semi-autonomous framework that is able to robustly respond
to uncertain human behaviors.

By using these realistic data and flexible algorithm, a
precise and accurate driver model can be developed that
is tailored to an individual and usable in semi-autonomous



frameworks and in driver behavior analysis. Future works
include adding more contexts, like night-time driving, poor
weather conditions, icy roads, levels of traffic, etc.; exam-
ining different distractions and the resulting variation in
behaviors; and testing various control methods while the
human is driving to verify that the system is minimally inva-
sive and maintains appropriate safety margins. In particular,
implementing and identifying parameters for the probabilistic
control framework will be explored to verify feasibility and
reliability. We will also consider use in a real vehicle,
through new, more realistic experiments and by examining
the relationship between driving behaviors in a simulator and
in an actual vehicle with respect to this model, as has been
studied here [23].
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