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Abstract— Given the current capabilities of autonomous ve-
hicles, one can easily imagine autonomy released on the road in
the near future. However, it can be assumed that the transition
will not be instantaneous, meaning they will have to be capable
of driving well in a mixed environment, with both humans
and other autonomous vehicles on the road. This leaves a
number of concerns for autonomous vehicles in terms of dealing
with human uncertainty and understanding of cooperation on
the road. This work demonstrates the need for focusing on
communication and collaboration between autonomy and hu-
man drivers. After analyzing how drivers perform cooperative
maneuvers (e.g. lane changing), key cues were identified for
conveying intent through nonverbal communication. It was
found that human observers can predict lane changes with over
two seconds in prior to the lane departure, without use of a
turning signal. Building on this concept, an autonomous control
scheme is proposed that aims to capture these subtle motions
before executing a lane change. To compare the proposed
human-inspired methods, three possible control schemes for
autonomous vehicles are implemented for a validation study
on human subjects to provide feedback on their experience. By
properly conveying intent through nuanced trajectory planning,
we show that drivers can predict the autonomous vehicle’s
actions with 40% increase in prediction time when compared
to traditional control methods, both as a passenger and while
observing the autonomous vehicle.

I. INTRODUCTION

Recently, there have been a number of breakthroughs in
autonomous driving [2], [16], [17]. Although there have been
many great advancements in sensing and control that have
lead to many successful implementations [18], one major
open area of research is understanding human drivers. While
it is generally assumed that autonomy will be publicly avail-
able in the near future, it can be assumed that the transition
will not be instantaneous [12]. This means autonomous vehi-
cles must be able to drive well in a mixed environment, with
both humans and other autonomous vehicles on the road.
This leaves a number of concerns for autonomous vehicles
in terms of dealing with understanding and predicting human
drivers as well as interacting with them. It’s also important
for the passengers understand the intent of the autonomous
vehicle, which has been shown to improve the acceptance of
autonomy [20].
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There has been a great deal of research in looking into
driver modeling looking within the ego vehicle [13], [19],
as well as studying driver perception [10]. However, there
are still many fundamental problems that have not been
addressed, including predicting driver’s behaviors and how
to interact and communicate with human drivers on the road.
As humans drive, we are able to assess what other vehicles
are likely to do and how they will likely respond to various
actions. For example, when driving on the freeway, many
drivers can estimate when nearby drivers want to change
lanes, even without a turning signal, which will be shown in
Section Through experience, we learn cues from driver’s
motions and gain intuition of how our actions will influence
other’s behaviors. If an autonomous system is going to be
introduced into this nuanced social system, we hope that the
system will have similar intuition and understanding, and
behave in an expected way.

Many researchers have attempted to address this by
estimating driver intent, ranging from driving monitoring
techniques to model based approaches [5], [11]. In [8], we
attempted to estimate the driver intent by building a dataset
of lane changes, where the driver subjects actively labeled
their mode of intent as they were driving. Using these labels,
it was possible to accurately predict the driver intent based on
the observable states of surrounding vehicles. Meaning that
by observing the vehicle and the states of nearby vehicle, it
is possible to identify the driver state.

One of the key findings of this study was that human
drivers convey their intent through their motions. Seconds
before a driver begins executing a lane change maneuver,
the driver will edge towards the next lane until there is
sufficient space to safety merge. This is intuitive, as this
preparation motion can be thought of as when a driver turns
on her turning signal and will communicate their intent to
surrounding drivers. As was mentioned, as a seasoned driver
drives, she can predict that a vehicle in the next lane wants
to change lanes even when no turning signal is used.

This concept of conveying intent through motion is well
supported by studies in neuroscience and in Human-Robot
Interaction. In [3], it was found that intent through motion
is incredibly important in social settings when humans are
interacting. Similarly, it was shown in [6] that by motion
planning with intent in mind will lead to more understandable
interactions between humans and robots.

Here, we wish to examine what effect of communicat-
ing intent through lane positioning has on predictability
for passengers within an autonomous vehicle as well as
surrounding vehicles. Incorporating nuanced motions will



hopefully lead to better social acceptance and understanding
when released on the roads with other human drivers. This is
similar to the work presented in [1], where qualitative driver
behaviors were learned using inverse reinforcement learning.
The work presented here attempts to capture behaviors in the
continuous space by integrating aggregated driver data into
a control scheme, rather than learn discrete actions.

By using the data collected in [8], we wish to mimic the
human driver’s motions to capture the subtle communication
that occurs in cooperative and collaborative manuevers. We
do this by defining a human-inspired control scheme that
controls the vehicle in a similar manner. Then, we validate
the advantage of this control scheme over traditional con-
trollers and human controlled vehicles through user studies.

This paper is organized as follows. Section [lI| presents the
formalization of this work and Section [lII] describes how the
control scheme was derived from human driving data. The
validation study results are presented in Section Finally,
the discussion and future work is presented in Section

II. METHODOLOGY

In this section, the formulation of the problem will be
presented, as well as the data used to understand the driver.

A. Modeling Driving as a Hybrid System

In this formulation, we envision the human driver (or
autonomous vehicle) as a hybrid system that controls the
vehicle differently depending on the mode of intent. Suppose
we are given a vehicle with some dynamics:

Trr1 = f(zr, ur) )]

where x; € R" is the state of the vehicle at time step k € N

and uy, € U is our input from our input space U, which we

assume is given as a close compact set containing the origin.
We also assume we are given the set of constraints or safe

regions in the environment, denoted C, and some function

that will tell us whether or not the safety constraints are

satisfied:

1, if x, €Cy

0, otherwise

P(ag, Cr) = { 2

It is assumed that the states of surrounding vehicles are
included in the constraint set, as well as a prediction of
what the vehicles will do. Additionally, current and future
road information is considered given.

When we consider how the vehicle is controlled by
humans, we suppose that the control law for a given vehicle
changes depending on the mode of intent. This can be
thought of as a high level decision making function, that
determines what the best course of action is given the
scenario. This implies that depending on what high level
action the driver wants to execute, the control law will
change. This is shown in Algorithm [I]

Formally, we can assume that the input is defined by some
algorithm that is dependent upon the discrete mode ¢ € @,

which is assumed to be known (or estimated) from a defined,
finite set of modes of intent:

U < Aq(l‘k,ck) (3)

where all variables are as previously defined. It is assumed
that this algorithm will find the optimal solution for the input
to the vehicle, or return no solution.

The modes of intent used in this work build off of data
collected in [8] that aimed to estimate driver intent.

Algorithm 1 Autonomous Control Scheme

1: Initialize Variables

2: for each time step, k£ do

3: xj, < update_vehicle_state()

4 Cy, < update_constraints()

5: q < determine_mode(xy, C,)

6: ug — Ag(zk, Cr) > Compute Optimal Control
7 execute_control (ug)

8: end for

B. Identifying Driver Modes

This section presents the driver model which models the
discrete modes for the lane changing manuever. In [8], we
presented a driver model that is able to identify the following
modes of behavior: lane keeping, preparing to change lanes,
and lane changing (see Fig. [T). This was executed using
observable features in the environment and human labeled
data to classify what mode the driver was in.

Lane Keeping

Executing
Lane Change

Preparing to
Lane Change

Fig. 1: Nlustration of Driver Modes, as presented in [8].

The key here was using labeled data, meaning that the
driver indicated which mode they were in as they were
driving in order to capture each driver’s decision making
process. Using this dataset, we were able to effectively
detect when drivers changed modes. The detection is based
on environmental cues, designed to give us insight to the
decision making process of the human driver. The resulting
identification algorithm attempted to be as flexible and as
portable as possible, meaning that it didn’t rely directly on
the control actions or state of the driver.

In this dataset, ten subjects were asked to execute lane
changes, resulting in over 200 example lane changes per
driver. The following features were collected, which we will
use to understand the driver behavior in each mode: (1) ego
vehicle information, including vehicle states and inputs; and
(2) environment constraints, including road boundaries and
observable, relative states of surrounding vehicles.



One of the key findings of this initial study was that
driver’s convey their intent through motion. It was observed
that prior to executing a lane change, humans will edge over
to the next lane, signaling to surrounding drivers their intent
to change lanes. As shown in Figure [2] the distributions
associated with these two modes are distinct.
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Fig. 2: Distribution of position in lane by mode, as presented
in [9]. It can be noted that the driver edges toward the next
lane while preparing to change lanes.

Using this data, our goal is to understand how the control
law (or cost function) of the vehicle changes with respect
to driver mode as well as the changes in the environment
(e.g. distance to the lead vehicle), to better understand the
communication and negotiation that occurs before a lane
change. Thus, we further consider the subtle behavior in
these lane keeping and preparing to lane change modes and
how to easily incorporate this into control frameworks.

III. RESULTING CONTROLLERS FOR DRIVER MODES

Given that the given dataset consists of multiple drivers
with unknown distributions, we wish to further analyze how
the drivers behave in the different modes. To do this, we
utilize a concept similar to a cost map, which is built by
discretizing the space and looking at how frequently the
vehicle passed through a particular location. When staying
in lane, this is defined by the position in the lane and the
distance to the lead vehicle. This can be thought of as the
spatial, empirical distributions associated with each driver
mode. By looking at the regions that the drivers frequently
inhabit, we can analyze how they generally behave. These
empirical cost maps for lane keeping and preparing to
change lanes are shown in Figure [3] It can be noted that the
although the modes are similar, drivers tend to communicate
their intent by edging toward the next line prior to indicating
that they are changing lanes.

By analyzing this cost map, we see that we can simplify
the problem by assuming that the drivers wish to follow
some nominal trajectory, given by the empirical distribution
on the cost maps. This is identified by finding the expected

lateral position, associated with a longitudinal coordinate (i.e.
expected lane position given a distance to the lead vehicle).
The smoothed nominal trajectory is shown as the pink line
in the distributions in Figures [3]

A. Control Implementation

In this paper, it is assumed that this control algorithm
takes the following form, where w;, ..y is the output of
an optimization program:

argmin Jq(z, u)
sub7ject to z; = f(xi_l, u,-_l)
P(xi,C;) >0 “)
u; € U B
Vi={1,...,N}

where J,(x,u) is the cost function that is defined for each
mode ¢, « and u are a concatenated vectors of states and
inputs from time step 1 to N, which is the pre-defined time
horizon, zy and wg are assumed to be given, and all other
variables are as previously defined. In essence, this finds
the optimal control over the next N time steps, given our
safety constraints, input limits, and initial conditions. This
implementation is can be thought of as similar to a Model
Predictive Control framew0r4].

Given that we can effectively identify the mode of intent,
the underlying cost function or control scheme must be iden-
tified. There are many advanced techniques for identifying
the cost function of a system, but many become infeasible
when dealing with highly noisy data [15]. We note that there
are extensions to many learning methods that include noisy
models, but often a distribution must be assumed. From
this dataset, it can be shown that driver’s do not always
follow known distributions, and particularly when looking
at a collection of different drivers.

Thus, for simplicity, our cost function is assumed to be of
the form:

Jy(z,u) = (x —2,) TPz —2,) +u' Qu (5)

where z, € R" is our desired nominal position trajectory
associated with mode q that is zero padded to account for the
vehicle states other than position and velocity, P and () are
weighting matrices to tune the costs on the states and inputs
respectively (which for simplicity are set to identity), and all
other variables are as previously described. The velocity of
the vehicle is set to be 15 m/s, to match the conditions set
in the original data collection process.

The resulting scheme is a trajectory following framework,
where the most significant change between modes is the x
and y position. Given the cost map above, we can compute
the expected lateral lane position given a distance to the lead
vehicle, which we use as a nominal trajectory to follow in

! While it must be noted that Model Predictive Control and optimization
based control frameworks can be difficult to implement, such optimization
programs can be solved quite efficiently in practice, even in the presents of
nonlinear dynamics [16]. Since the work presented here is a pilot study for
assessing interaction and understanding on the road, the inputs are computed
offline for ease of implementation, and executed for the subjects in real-time.
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Fig. 3: In these two figures, the cost maps for the two similar modes are visualized. The dark areas show locations with
low probability, and light areas show locations with high probability. The pink line shows the mean position within the lane

given the distance to the lead vehicle.

the framework presented. This allows us to mimic the driver
behaviors and hopefully capture the subtle communication
that occurs in this social scene.

IV. VALIDATION STUDY

To show that by mimicking the driver data we are effec-
tively communicating to the other drivers, a pilot validation
study was completed as a proof of concept. The goal of
this study was to verify two concepts: (1) that humans un-
derstand other human motions more effectively than generic
autonomous motions and (2) that our control scheme using
nominal trajectories is effectively capturing the non-verbal
communication between drivers.

A. Comparing Control Schemes

In this study, we compared three nominal trajectory meth-

ods for identifying 2, in Equation [}

1) Controller design using standard methods, where the
vehicle uses generic trajectory templates for lane keep-
ing and lane changing: x, = x., where x. denotes the
lane center. The decision making still aims to mimic
the human decision making process to match decision
timing, but the trajectory the controller follows stan-
dard methods that aim to minimize deviation from the
center of the lane.

2) Controller design using the human inspired methods,
where the desired lane position is given by: z, =
E[X,|d], where we compute the expected lane position
of the data associated with the current mode, X, given
the distance to the lead vehicle, d. Not only does the
decision making process mimic the human, but the
trajectories are derived by using the templates found
using the cost maps shown in Figure

3) Human controlled baseline, where the inputs from
a human driver are used to act as a baseline for
understanding, meaning that the optimization control
framework is not used. The input from a human driver
is replayed, so the subject experiences the control
scheme as if it where autonomous.

In this study, these control schemes were implemented in a
scenario where the autonomous vehicle merges in front of a
vehicle in the next lane, with the presence of a lead vehicle.
In addition, these control schemes are examined from two
different perspectives: (1) when the driver is experiencing
the autonomy as a passenger in the driver’s seat and (2)
as another vehicle on the road. The scenario and the two
viewpoints are visualized in Figure [

Nine subjects were asked to experience these autonomous
(or seemingly autonomous) control schemes in a random
order, riding in a motion platform vehicle simulator (Fig.
[@). This simulator aims to recreate a safe, realistic environ-
ment for conducting human subject studies when developing
controllers, using PreScan simulation software [7].

To understand how effective the communication of intent
was for each method, the subject was asked to indicate in
real-time when they thought the autonomous vehicle was
about to change lanes, similar to when they believed the
vehicle might turn its turning signal on. We note that no
blinkers were used to verify that the subjects could predict
the lane change using just motion cues. In addition, feedback
from the subjects were obtained through a survey, targeting
the understandability of the autonomous vehicle as well as
user experience during the interaction.

For the three tested control schemes, the subjects were
asked to experience the autonomous vehicle from view 1 and



Fig. 4: (Left) The validation study asked the driver to indicate when the autonomous vehicle (shown in red) was about to
change lanes from view 1, as a passenger in the driver seat, and from view 2, as another vehicle on the road. (Right) Motion
simulator originally used to collect the dataset, and used to validate the different control schemes.

press a button when they believed the autonomous vehicle
was about to change lanes. Then, the subject answered survey
questions to obtain feedback on the three different control
schemes. This was then repeated from view 2 to obtain
feedback from a different perspective.

B. Predictability Results

To gauge how predictable the autonomous vehicle was,
we compare the time that the subject indicated when the
autonomous vehicle was about to change lanes relative to
the time the vehicle exits the lane, crossing over into the
next lane. For each method, this is defined as:

tp = lLaneExit — Human (6)

where ¢ p is the prediction time (i.e. the time horizon prior to
the lane change), t1 aneExit 1S the time at which the autonomous
vehicle exits the lane, and tyyman 1S the time indicated by the
human to let us know she believes the autonomous vehicle
is about to change lanes. Ideally, the subject will be able to
predict that the vehicle is intending on changing lanes well
before it actually happens.

The average timing responses are provided in Table [[|
and a visualization of the improvement in prediction time
compared to standard control methods is shown in Figure
EL As shown, the prediction time is increased to more than
a one second time horizon, which is significant given the
limitations of human reaction time. By giving the driver extra
time to react, smoother responses and improved acceptance
can be expected.

From this study of predictability, the following observa-
tions can be made about how humans communicate on the
road and the different control schemes:

1) Effect of Lane Position vs. Heading Angle: A com-
mon technique for predicting lane departures is to
look at the distance to the lane marker and heading
angle and compute the time to lane exit based on the
current speed [14]. This means that if the heading
of the vehicle is pointing toward the next lane, a
time prediction can be calculated for the lane change.
To see if the human prediction was similar to this
model based method, we counted the instances when
subjects indicated the lane change versus instances
when there was a lane change predicted using this

TABLE I: Average prediction time for each method in seconds.

[ Method | Standard | Human-Inspired | Baseline |

View 1 0.958 1.462 2.307
View 2 1.110 1.452 2.102

Human-Inspired Method

Driver Baseline

0.0 0.2 0.4 0.6 0.8 1.0 12
Prediction Time Increase

Fig. 5: Visualization of increased time prediction performance
compared to the standard methodology, calculated as (Tp —
Ts)/Ts, where Tp is the expected prediction time with the
associated each method and 75 is the expected prediction time
associated with the standard control design method, across both
view points.

model based method within the next two seconds.
We found that these two predictions were only in
agreement approximately 40% of the time, indicating
that humans are using cues other than heading angle
to predict lane changes.

2) Standard Methods: From both viewpoints, the user is
generally able to predict when the lane change is about
to occur with approximately one second prediction
time. It was also noted that this was prediction time
was more consistent between subjects than the other
methods, in terms of the variance. It was noted by
subjects that timing of this lane change was highly
predictable, due to the fact that the decision making
and timing came across as human-like.

3) Human-Inspired Methods: As we can see, this shows
a significant improvement of predictability from sub-
jects within the vehicle. We see approximately a 40%
increase in the time prediction, implying that the lane
positioning is a key component of communicating on
the road.

4) Human Controlled Baseline: This method provides
the best predictability, verifying the hypothesis that
humans understand their behaviors even without the
traditional visual cues (like turning signals). This also
validates the claim that humans communicate through



motion while driving to convey their intent, which is
well understood by other drivers. We note that although
this scheme gave a high predictability measure, the ma-
jority of subjects preferred the other control schemes,
describing this its behavior as “erratic”.

C. Subject Feedback

Interesting feedback and comments were obtained through
survey and comments that shed light on the user experience.
When riding in the autonomous vehicle, just over half of
the subjects preferred the Standard Method, stating that it
felt smoother than the other methods. About half of these
subjects indicated that it was also more predictable than other
methods. This is somewhat counter-intuitive, as we can see
in Figure [5] that this is not necessarily the case given the
subjects’ prediction time.

Majority subjects also commented that the Standard Con-
trol Method executed a smooth and safe lane change.
Meanwhile, comments and feedback on the Human-Inspired
Method revealed that it came across as being less aggressive,
which may have impacted the subjects perception on the
automation’s competence. For the human controlled vehicle,
the drivers stated that the controller seemed more erratic than
other methods and indicated that this was the least trusted
control scheme.

V. DISCUSSION

In conclusion, we present the findings of a pilot study
on human-inspired control schemes that could safely com-
municate through motion to surrounding drivers. This was
completed by using human-inspired nominal trajectories for
different driver modes that have been identified using realistic
driver data from multiple drivers. The following ideas were
confirmed: (1) humans communicate through motion while
driving and (2) the presented control scheme was able to
capture this and convey its intent to surrounding drivers.

Since this study was a proof of concept, there is a great
deal of future work to be completed. More advanced methods
for identifying the nominal trajectories and for controlling
the vehicle must be explored to improve the feel of the
autonomous system, and expand the framework to include
a wider variety of scenarios and driver modes.

Another extension of this work would be generalizing
and expanding this formulation to other spaces, beyond
autonomous vehicles. This is crucially important as more
and more robots are entering human dominated spaces, each
with their own social cues and interactions. Questions arise
as to how to implement the methods considered here in a
more widely applicable form, particularly in areas and fields
where there does not exist detailed datasets, and are left for
future studies.
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