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Abstract—Threat assessment during semiautonomous driving is
used to determine when correcting a driver’s input is required.
Since current semiautonomous systems perform threat assessment
by predicting a vehicle’s future state while treating the driver’s in-
put as a disturbance, autonomous controller intervention is limited
to a restricted regime. Improving vehicle safety demands threat
assessment that occurs over longer prediction horizons wherein
a driver cannot be treated as a malicious agent. In this paper,
we describe a real-time semiautonomous system that utilizes em-
pirical observations of a driver’s pose to inform an autonomous
controller that corrects a driver’s input when possible in a safe
manner. We measure the performance of our system using several
metrics that evaluate the informativeness of the prediction and the
utility of the intervention procedure. A multisubject driving exper-
iment illustrates the usefulness, with respect to these metrics, of
incorporating the driver’s pose while designing a semiautonomous
system.

Index Terms—Intelligent vehicles, nonlinear control systems,
predictive control, vehicle safety.

I. INTRODUCTION

D ESPITE the development of numerous vehicular safety
features, the number of traffic accidents and fatalities

remains in the several millions and hundreds of thousands,
respectively [1]. Although it is difficult to determine exactly
why these accidents occur, there is considerable evidence
that in-vehicle information systems and devices, such as cell
phones, make the driver prone to distraction, which degrades
driving performance. Several studies have estimated, using data
from vehicles instrumented with cameras, that driver distraction
contributes to between 22% and 50% of all crashes [2], [3].
Other studies have verified that driver distraction due to cell
phones is correlated with an inability to maintain central lane
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position and led to lower overall response time [4]. Alarmingly,
a recent report has indicated that the percentage of fatal crashes
due to distraction is rising [5].

A potential resolution to the driver distraction problem is
the autonomous vehicle [6]–[9]. Although autonomous systems
have garnered much of the public’s attention, the deployment
of these systems has been hindered due to the lack of formal
methods that are capable of verifying the safety of such systems
in arbitrary situations. Recognizing this shortcoming of theo-
retical verification algorithms in the face of a growing number
of accidents due to driver distraction, several car companies
have begun designing active safety systems that operate only
over short time horizons in order to avoid accidents. These
systems rely on threat assessment to determine when control in-
tervention that corrects the driver’s input is required. Volvo, for
example, has developed one of the more advanced active safety
systems, which works at low speeds to detect potential accidents
by treating the driver’s input as a disturbance, computing the
reach set of the car over a short time horizon (approximately
500 ms), and warns the driver if it detects an intersection of the
reach set with an obstacle [10]. If the driver does not react in
time, the system will automatically brake to avoid or mitigate
an accident. Confidence in this autonomous breaking maneuver
and its threat assessment system that treats a driver’s input as
a disturbance was achieved via extensive testing over several
million kilometers. In these types of semiautonomous active
safety system, the driver assumes control for the majority of
the time, with the control system acting as the copilot.

As these semiautonomous systems perform more complicated
maneuvers at higher speeds, threat assessment must occur over
a longer time horizon. In this context, treating the driver as just
a disturbance results in an exorbitantly sized reach set, which
results in a semiautonomous system that begins to behave like
a fully autonomous one. Therefore, as this shift occurs, the
driver’s behavior becomes fundamental during the design of a
provably safe semiautonomous vehicle. Importantly, a single
universal driver model for threat assessment is insufficient.
Instead, a framework that adapts to different drivers by exploit-
ing real-time empirical observations of the driver is critical.
Empirical validation becomes difficult due to the reliance of the
system on the driver model itself. Fortunately, recent advances
in numerical optimization have shown that provably safe con-
trollers can be designed rapidly and robustly given a particular
circumstance [11], [12]. In this paper, we extend the theoretical
framework that we described in [13], by constructing a real-
time system that utilizes empirical observations of a driver to
keep a vehicle safe.
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A. Driver Modeling and Prediction

Monitoring and modeling a driver’s behavior has been con-
sidered by different communities. The human factors com-
munity has focused on quantifying the amount of attention
required to accomplish a variety of tasks, and the level of
distraction due to common preoccupations that arise during
driving [14], [15]. These studies, however, do not provide a
method to predict the driver’s behavior given a particular level
of distraction and task complexity.

Other communities have used body sensors on the driver
[16], eye trackers [17], facial tracking [18], [19], or other sen-
sors [20]–[22] to predict driver behavior to provide warnings of
impending danger. Although these methods predict driver intent
with 70%–90% accuracy over varying prediction horizons, they
do not describe how to employ this prediction during control
design or how to quantify the utility of a given prediction, with
respect to preventing accidents [23].

Trajectory prediction models, on the other hand, restrict
themselves to specific maneuvers [24], [25] or scenarios [26]
and do not consider the driver state [27], [28]. Existing meth-
ods break the trajectory into two components for prediction:
speed and steering. Oftentimes, the high-level driver behavior
is linked with hybrid or hidden Markov models to predict driver
intentions [29], [30] and incorporate human factors such as
comfort and skill level [24], and even day-to-day experiences
[31]. However, the actual driver behavior is never incorporated
in the control framework.

B. Paper Contributions and Structure

In the interest of thoroughness, Section II describes the
theoretical framework, and Section II-C describes several met-
rics to evaluate the performance of the theoretical framework,
which was originally described in [13]. Our contributions in
this paper are organized as follows: Section II describes a
new component to the theoretical framework that designs an
autonomous controller to render a vehicle safe. Section III
describes the implementation of the driver and vehicle model
and autonomous controller design. In Section IV, we construct
a real-time hardware-and-driver-in-the-loop experiment to il-
lustrate the utility of incorporating empirical observations of
the driver in the control loop to prevent accidents. In Section V,
we present our experimental results and empirically validate
our proposed architecture’s ability to prevent accidents, and
Section VI concludes the paper.

II. METHODOLOGY

Here, we present a semiautonomous real-time vehicle frame-
work that relies on driver modeling. A specific instantiation of
this framework is described in subsequent sections.

A. Semiautonomous Vehicle Framework

The framework controls the evolution of a vehicle, which is
described as the solution to the vehicle dynamics as

x(k + 1) = f (x(k), u(k)) ∀k ∈ N (1)

where x(k) ∈ R
n is the state of the vehicle at time k; u(k) ∈

U is the input into the vehicle dynamics at time k, where
U ⊂ R

m is a compact and connected set containing the origin;
and x(0) is assumed given. In addition, for a fixed horizon
N ∈ N, let UN = {{u(k)}Nk=0 | u(k) ∈ U,∀k ∈ {0, . . . , N}}.
The constraint function, i.e., ϕN : Rn × {0, . . . , N} → R,
describes the safe part of the environment within which the
vehicle travels. That is, the state of the car remains outside of
obstacles in the environment at a time k if ϕN (x(k), k) ≤ 0.
Observe that if we know the location of the obstacles at k = 0
but are only aware of bounds on the movement of each obstacle,
then we can still encapsulate these bounds within the constraint
function ϕN .

We measure the driver’s state by using observations of his
motion inside of the vehicle. Several recent advances in com-
puter vision have made possible the real-time robust articulated
tracking of a human [32]. Employing these latest insights,
we presume the existence of a system capable of articulated
tracking in our vehicle and describe a specific implementation
in Section IV.

Assumption 1: Given N ∈ N and N > 0 joints (e.g., elbows
or knees), we assume there exists a function θN : {−N, . . . ,
0} → R

3N called the driver state function, which describes the
evolution of the positions of the joints of the driver.

The driver state function θN describes how the driver has
moved in the previous N + 1 time steps.

B. Problem Formulation

Our semiautonomous vehicle framework divides the problem
of determining when to intervene into three components. To
appreciate our proposed architecture, consider the “simplest”
semiautonomous architecture that treats the driver’s input as
a disturbance, constructs the reach set of the vehicle, and
intervenes in the operation of the vehicle whenever the reach
set of the vehicle intersects with an obstacle and whenever safe
intervention is feasible. Unfortunately, by treating the driver as
a disturbance, the simplest architecture predicts a large potential
set of behavior and therefore acts too often. That is, suppose,
for example, that the semiautonomous controller employed a
breaking maneuver and did not want to decelerate the vehicle
quickly. In this instance, the controller would need to act over
a long time horizon (e.g., more than 2 s). The set of reachable
states at highway speeds for a 2-s time horizon is large and, in
all likelihood, would intersect with some obstacle all the time
(e.g., a vehicle in a neighboring lane), although the driver would
most likely never have an accident with this obstacle.

The first component of the proposed semiautonomous vehi-
cle framework addresses this deficiency by designing a control
algorithm, which incorporates the prior observations denoted
by O (this may include past states of the driver, past vehicle
trajectories, and other sensor data) and the current information
I = {N,N, f, x(0), ϕN ,UN , θN}, in order to predict a smaller
and more useful set of potential states for the vehicle and
the future expected steering. This component is needed as the
poor performance of not incorporating observations and future
predictions of the driver was shown in [13].
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The component is defined formally as follows.
Component 1: Fixing N , N ∈ N and choosing α ∈ [0, 1],

construct the vehicle prediction multifunction (VPM) denoted
by Δ(α, k,O, I) ⊂ 2R

n

as the solution to

Δ(α, k,O, I) = argmin
Ω⊂Rn

|Ω|

s.t. P ((X(k)− x(0)) ⊂ Ω|O, I) ≥ α,

∀k ∈ {0, . . . , N} (2)

where |Ω| denotes the area of the set Ω; P (A|B) is the con-
ditional probability of A given B; and P ((X(k)− x(0)) ⊂
Ω|O, I) denotes the probability that the difference between a
solution to (1) beginning at x(0) in k time steps, denoted by
X(k), and x(0) is inside of the set Ω, given the prior obser-
vations and prior information (note that X(k) is capitalized, in
order to distinguish it as the random variable).

The VPM is the smallest size set that contains all α probable
vehicle trajectories in k time steps, given prior observations
and current information. In order to construct this function,
we require a model linking X(k) with prior observations.
We assume that the minimizer of (2) exists and is unique.
In Section III-C, we describe how we construct the required
conditional distribution and how we construct the VPM.

Using the VPM and the constraint function, the second com-
ponent of the semiautonomous vehicle framework is a binary-
valued function that is defined formally as follows.

Component 2: The vehicle intervention function (VIF) de-
noted by g is 1, when the driver requires aid, and is defined
as

g(α,O, I)=
{

1, if ∪N
k=0 (Π (Δ(α, k,O, I)) ∩ C(k, I)) 
=∅

0, otherwise
(3)

where C(k, I)={z∈R
n|ϕN (z−x(0), k)>0} and Π : 2R

n →
2R

n

. Π is a projection operator that allows for the selection of
certain trajectories if required. The VIF is 1 if the projection Π
of the α probable vehicle trajectory intersects an obstacle in the
next N + 1 time steps, given our past observations and current
information. In Section III-C, we describe how we define
the VIF.

When intervention is required, the third component of the
semiautonomous vehicle framework computes an input to the
vehicle for the next N + 1 time steps that renders the vehicle
safe, as follows.

Component 3: The autonomous controller, denoted by λ :
R

n × R
n → UN ∪ ∅, determines an input to the vehicle for the

next N + 1 time steps and is defined as

δu = λ (Π (Δ(α, k,O, I)) , C(k, I)) (4)

where δu can be either an augmented input to the driver’s
steering or the actual steering for fully autonomous control. If
the autonomous controller is unable to construct a control that
renders the vehicle safe over the horizon N , then δu returns ∅.

In Section III-D, we describe how we construct the au-
tonomous controller.

Algorithm 1 describes our semiautonomous vehicle frame-
work. Notice that, since we do not demand the VPM to per-
fectly predict the potential behavior of the vehicle, the driver
may get into an accident because the semiautonomous vehicle
framework did not intervene. This means that the safety of the
semiautonomous vehicle framework is guaranteed in the sense
that, when the semiautonomous controller intervenes, it is able
to do so in a provably safe way under the environment model
prescribed by ψN .

Algorithm 1 Semiautonomous Vehicle Framework

1: Data: N , N ∈ N and x(0) ∈ R
n

2: Let u(k) = 0, ∀k ∈ {0, . . . , N}.
3: for Each time step do
4: update ϕN and θN , and set x(0) equal to the

vehicle’s current state.
5: If g(α,O, I) == 1 and δu 
= ∅ then
6: apply δu = λ(Π(Δ(α, k,O, I)), C(k, I)) to the

vehicle.
7: end if
8: end for

C. Metrics to Evaluate Performance

To evaluate the performance of our VPM and the VIF, we uti-
lize four metrics first described in [13], which we briefly sum-
marize in the following. The most informative set prescribed by
the VPM would predict a single vehicle trajectory that was al-
ways accurate. Since this would demand perfectly deciphering
the intent of the driver, we instead forecast a set of potential
trajectories. During our experiment in Section IV, we measure
the informativeness of our prediction by first determining if
the observed vehicle behavior for the next N + 1 time steps
was inside of the predicted set at each of the next N + 1 time
steps; we call this the accuracy of the VPM (AVPM). Explicitly,
fixing α ∈ [0, 1], suppose that we are given M distinct observed
vehicle trajectories for N + 1 time steps beginning at time step
i, denoted by {xi,N : {0, . . . , N} → R

n}Mi=1, then

AVPM =
1
M

M∑
i=1

N∏
k=0

×
{
(xi,N (k)− xi,N (0)) ∈ Δ(α, k,O, Ii)

}
(5)

where is the indicator function, and the current information
Ii is indexed by the time step i since the VPM is a function
of the initial condition of the vehicle xi,N (0). We also measure
the precision of the predicted set, which is called the precision
of the VPM (PVPM), by computing one minus the area of the
predicted set for the next N + 1 time steps over the area of the
set of reachable states for the next N + 1 time steps, as

PVPM = 1 − 1
M

M∑
i=1

∣∣∣∪N
k=0Δ(α, k,O, Ii)

∣∣∣∣∣∣∪N
k=0R(k, Ii)

∣∣∣ (6)
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where R(k, Ii) is the set of reachable states at time step k
beginning at xi,N (0). We normalize by the set of reachable
states since it is always accurate, but imprecise because it
assumes that the vehicle behaves arbitrarily.

Similarly, the most useful VIF would only act if and when
the vehicle was actually going to get into an accident. Un-
fortunately, the determination of this most useful intervention
procedure is difficult since it demands being clairvoyant. To
understand these concepts in this context, we borrow several
definitions from the binary classification literature [33]. We
define an observed N + 1 time step vehicle trajectory to be
“true” if an accident is actually observed at any instance in
the next N + 1 time steps, and we define an observed N + 1
time step vehicle trajectory to be “false” if an accident is not
observed in any of the next N + 1 time steps. We define an
observed vehicle trajectory to be “positive” if the VIF (i.e., the
classifier in our context) returns 1, and we define an observed
vehicle trajectory to be “negative” if the VIF returns 0.

The recall of the VIF (RVIF) is then defined as the true-
positive observations divided by the sum of the true-positive
observations and false-negative observations (note that, in the
binary classification literature, this is when the observation is
true, but the classifier returns negative) and measures the sensi-
tivity of the vehicle detection function. If the RVIF is 1, then the
semiautonomous vehicle framework intervened whenever an
accident occurred. Notice that if, instead of relying on the VPM,
the VIF relied on the set of reachable states, then there would
be no false-negative observations since an accident could have
only occurred if there was a nontrivial intersection between the
reachable set (RS) and an obstacle. Therefore, this choice of
VIF would always be perfect, with respect to this metric.

The precision of the VIF (PVIF) is defined as the true-
positive observations divided by the sum of the true-positive
observations and false-positive observations (note that, in the
binary classification literature, this is when the observation is
false, but the classifier returns positive). If the PVIF is much less
than 1, then the semiautonomous vehicle framework intervened
far more than was actually required. If this is the case, the
vehicle begins to behave more like an autonomous vehicle.
Suppose again that, instead of relying on the VPM, the VIF
relied on the set of reachable states, then there would most
likely be a large number of false-positive events since the RS
would intersect with some obstacle in the neighboring lanes
that the driver, in all likelihood, would never have an accident
with. Our goal in the remainder of this paper is to illustrate the
informativeness and utility of considering prior observations
before the current time step, by using these four metrics.

III. SYSTEM ARCHITECTURE

Here, we describe the vehicle model and specific instan-
tiations of the semiautonomous architecture proposed in the
previous section used in the experiment, which we describe in
the next section.

A. Vehicle Modeling

Here, we present the vehicle dynamics illustrated in Fig. 1
used during control design. We use the following set of differ-

Fig. 1. Illustration depicting the forces modeled in the vehicle body-fixed
frame (Fx1� and Fx2�), the forces in the tire-fixed frame (Fl� and Fc�), and
the rotational and translational velocities used in the vehicle model described
in Section III-A. The relative coordinates ex2 and eψ , in addition to the road
tangent ψd, are also pictured.

ential equations based on the bicycle model described in [34] to
describe the vehicle motion within the lane:

mẍ1 =mẋ2ψ̇ + 2Fx1f + 2Fx1r (7a)

mẍ2 = −mẋ1ψ̇ + 2Fx2f + 2Fx2r (7b)

Izψ̈ = 2aFx2f − 2bFx2r (7c)

ėψ = ψ̇ − ψ̇d (7d)

ėx2
= ẋ2 cos(eψ) + ẋ1 sin(eψ) (7e)

ṡ = ẋ1 cos(eψ)− ẋ2 sin(eψ) (7f)

where m and Iz denote the vehicle mass and yaw inertia,
respectively; a and b denote the distances from the vehicle’s
center of gravity to the front and rear axles, respectively. ẋ1

and ẋ2 denote the vehicle’s longitudinal and lateral velocities,
respectively, and ψ̇ denotes the vehicle’s turning rate around a
vertical axis at the vehicle’s center of gravity. eψ and ex2

in
Fig. 1 denote the vehicle orientation and lateral position in a
road-aligned coordinate frame, respectively. ψd is the angle of
the tangent to the road centerline in a fix coordinate frame. s is
the vehicle longitudinal position along the lane center. Fx2f and
Fx2r are the front and rear tire forces acting along the vehicle’s
lateral axis, and Fx1f and Fx1r are the corresponding forces
acting along the vehicle’s longitudinal axis.

The longitudinal and lateral tire force components in the
vehicle body frame are modeled as

Fx1� =Fl� cos(δ�)− Fc� sin(δ�) (8a)

Fx2�
=Fl� sin(δ�) + Fc� cos(δ�) (8b)

where � denotes either f or r for front and rear tire, and δ�
is the steering angle at the wheel. We introduce the following
assumption on the steering angles.

Assumption 2: Only the steering angle at the front wheels
can be controlled (i.e., δf = δ and δr = 0). In addition, an ac-
tuator δc, which corrects the driver-commanded steering angle
δd, is available.
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The longitudinal force in the tire frame, i.e., fl�, is calculated
from

fl� = βrμFz� (9)

where βr ∈ [−1, 1] is referred to as the braking ratio. βr = −1
corresponds to full braking, and βr = 1 corresponds to full
throttle. fc� is computed using a modified nonlinear Fiala tire
model [35]

fc� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Cα tan(α�)

− C3
α

27η2μ2Fz�
tan3(α�)

+ C2
α

2ημFz�
| tan(α�)| tan(α�), if |α�| < αsl

−ημFz�sgn(α�), if |α�| ≥ αsl

(10)

where α� denotes the tire slip angle, μ denotes the friction co-
efficient, and Fz� denotes the vertical load at each wheel. Cα is
the tire cornering stiffness, and η =

√
μ2F 2

z − f2
l /μFz , which

can be written as η =
√

1 − β2
r . αsl = tan−1(3ημFz/Cα) de-

notes the saturation point of the slip ratio. μ is assumed to be
a known constant and is the same for all wheels. The vertical
forces Fz� are also assumed to be constants and are determined
by the steady-state weight distribution of the vehicle with no
accelerations at the center of the gravity. The slip ratios α� are
approximated as

αf =
ẋ2 + aψ̇

ẋ1
− δ αr =

ẋ2 − bψ̇

ẋ1
. (11)

We write the model described in (7)–(11) in the form

ẋ(t) = fc (x(t), u(t)) (12)

where x = [ẋ1, ẋ2, ψ̇, eψ, ex2
, s] and u = [δ, βr] are the state

and input vectors, respectively. We discretize the system in (12)
with a fixed sampling time Ts to obtain

x(k + 1) = f (x(k), u(k)) . (13)

B. Safety Constraints

The overall objective of the proposed safety system is to
keep the vehicle on the road while avoiding obstacles. Here,
we describe the constraints on the vehicle state and input. To
reduce the complexity, we constrain the center of gravity of the
vehicle for road-keeping and obstacle-avoidance constraints.
The requirement that the vehicle remain in the free portion of
the road is expressed as

ex2,min + w ≤ ex2
≤ ex2,max − w (14)

where ex2,min and ex2,max are the bounds determined by the
road width and obstacle position at each prediction step. w is the
vehicle width. Angle deviation constraints are not incorporated
because, at high speed, large angle deviation results in either
an inability to keep the vehicle on the road or a high cost
from the large/fast steering input to keep the vehicle on the
road. Thus, the lateral deviation constraints implicitly limit
angle deviations. To ensure that the vehicle operates in a state
space where a normal driver can easily handle the vehicle, we

constrain the tire slip angles to remain within the linear region.
Hence

−αsl ≤ α� ≤ αsl. (15)

The constraints (14)–(15) are compactly written as

h(x, u) ≤ 0 (16)

where

h(x, u) =

⎡
⎢⎢⎢⎢⎢⎣

−ex2
+ ex2,min + w

ex2
− ex2,min + w

−αf (x, u)− αsl

−αr(x)− αsl

αf (x, u)− αsl

αr(x)− αsl

⎤
⎥⎥⎥⎥⎥⎦

(17)

and 0 is the zero vector with appropriate dimension.

C. VPM and VIF

Since determining the exact level of distraction of the driver
is an ill-posed problem, we instead hypothesize that the current
configuration of the driver and the environment along with prior
observations is correlated with the future state of the vehicle
over a short time horizon. We further hypothesize that the
marginal distribution of these current and prior observations,
with respect to the future state of the vehicle, i.e., P ((X(k)−
x(0)) ⊂ Ω|O, I), is a multimodal distribution.

This marginal distribution, which allows us to determine the
VPM, is constructed by first clustering the data using a k-means
algorithm [36] and then constructing an empirical distribution
within each cluster separately. As a result, we do not explicitly
determine whether the subject is attentive or distracted or how
the current state of the environment (e.g., road curvature or
the state of other vehicles) deterministically influences driver
behavior.

For each cluster M, there is a set OM = {oi}i∈{1,...,|M|} ⊂
O of observations associated with each cluster, where |M|
denotes the number of elements in mode M. Each oi is a vector
composed of observations, which we describe in Section V.
Fixing N ∈ N with respect to each observation oi, we can
associate the actual observed vehicle input and trajectory for
the next N + 1 time steps beginning at time step i, which we
denote by ui,N : {0, . . . , N} → R

m and xi,N : {0, . . . , N} →
R

n, respectively.
As Algorithm 1 runs at each time step, we are given current

information I, which determines that cluster to which the driver
belongs at the time step in question. Letting M denote the
mode to which I belongs, for some z1, z2 ∈ R

n, let Ω =
{x ∈ R

n|z1 ≤ x ≤ z2}, and we define the probability that the
difference between the future trajectory at time step k, denoted
by x(k), and the vehicle’s initial condition x(0) belongs to Ω
(between z1 and z2) as

P (z1 ≤ x− x(0) ≤ z2|O, I)

=
1

|M|
∑
i∈M

{z1(k) ≤
(
xi,N (k)−xi,N (0)

)
≤z2(k)}. (18)
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During our experiment in Section IV, we find the minimum z1
(most counterclockwise turn) and maximum z2 (most clock-
wise turn) such that the probability in (18) is 1 (i.e., we let
α = 1).

Given the VPM, the VIF must determine whether interven-
tion is required. In our prior work, the function Π in (3) was
chosen to be the identity map since our focus was just the
determination of when to intervene rather than how to intervene
[13]. Our goal, in contrast, within this paper is the construction
of a real-time intervention procedure. Since the state of the
art in our chosen strategy for real-time control intervention,
which we describe in the following, is only able to guarantee the
safety of a single trajectory after autonomous intervention, we
construct Π to pick the expected value Δ(1, k,O, I) for each
k ∈ {0, . . . , N}. For convenience, we denote the user’s input
corresponding to this expected trajectory as udriver(k).

D. Predictive Control Problem

Here, we formulate the lane-keeping and obstacle-avoidance
problem as a model predictive control (MPC) problem [37].
At each sampling time instant, an optimal input sequence is
computed by solving a constrained finite-time optimal control
problem. The computed optimal control input sequence is only
applied to the system during the following sampling interval. At
the next time step, the optimal control problem is solved again,
using new measurements.

Using the discretized system described in (13), we formulate
the optimization problem being solved at each time instant as

min
u,ε

λε+

N∑
k=0

(
(uc(k))T R (uc(k)) + (δuc(k))T S (δuc(k))

)

(19a)

s.t. x(k + 1) = f (x(k), u(k)) (19b)

u(k) = uc(k) + udriver(k) (19c)

uc(k) = uc(k − 1) + δuc(k) (19d)

h (x(k), u(k)) ≤ 1ε, ε ≥ 0 (19e)

u(k) ∈ UN (19f)

δuc(k) ∈ UN (19g)

∀k ∈
{

0, . . . , N − 1
}

(19h)

x(0) = x0. (19i)

x(k) denotes the predicted state at time k from the current
time obtained by applying the control sequence u = {u(0), . . . ,
u(k − 1)} to the system in (13) with x(0) = x0. N denotes
the prediction horizon. Equation (19e) describes the state con-
straints imposed, in order to ensure lane keeping and obstacle
avoidance, as described in Section III-B, and have been im-
posed as soft constraints, by introducing the slack variable ε in
(19a) and (19e). udriver(k) is the predicted driver steering input
at time step k, provided by the VPM. uc(k) is the correction
to the driver’s input. δuc(k) is the change in correction to the
driver’s input, which is initialized to be 0. R, S, and λ are
weights penalizing the control correction, the change rate of
control correction, and the violation of the soft constraints,

respectively. In the experiment described in Section V, the

values of R, S, and λ are chosen to be

[
1 0
0 0.1

]
,

[
0.1 0
0 0.01

]
,

and 1000, respectively. u and ε are initialized as zero at the
beginning of each optimization.

It is clear that uc is zero at the optimal solution to the
optimization problem as long as udriver is able to keep the states
inside the safe region. The MPC controller runs on a dSpace
Microautobox, which runs at 800 MHz with 8-MB memory.
The nonlinear optimization problem in (19) is a nonlinear
and nonconvex receding horizon optimization problem and is
solved by NPSOL at a sampling rate of 200 ms. The com-
putational time varies under different scenarios. In practice,
we found that the solver converges to a solution in the given
sampling time to the required accuracy.

IV. EXPERIMENTAL SETUP

This section describes an experiment, which is inspired
by the survey in [4], conducted to analyze our proposed
framework.

A. Hardware Setup

The experimental setup, as illustrated in Fig. 2, and the driver
view, as illustrated in Fig. 3, consist of a driving simulator,
a Microsoft Kinect, and a smartphone to simulate distraction.
The Kinect is placed approximately 1 m in front of the subject,
0.25 m to the right of the subject, and 0.25 m above the subject’s
eye level. Due to the existing limitations of the Kinect and since
our distraction mechanism relies upon the driver answering a
cell phone, we focused our attention on the shoulder, elbow, and
wrist joints on each arm. A steering wheel and pedals (Logitech
G-25) are used to interface with the driving simulator through
Simulink. The driving simulator, i.e., CarSim 8.02, commu-
nicates with a real-time dSpace DS1006 hardware-in-the-loop
over a fiber-optic link for the physics and model computations,
at 50 frames per second, and a real-time dSpace DS1401
MicroAutoBox over an ethernet link for the MPC controller.
CarSim’s vehicle model is proprietary, but CarSim outputs
information at each time step about the state of the vehicle and
environment. This includes information at each time step about
the global coordinates of the car, the path of the center of the
road in global coordinates, the radius of curvature of the road,
the longitudinal and lateral velocities of the car at each time
step, the location of all of the obstacles in global coordinates,
the longitudinal and lateral velocities of all of the obstacles, and
a radar sensor telling us which obstacles are observable from
the vehicle. All of this information is incorporated during the
safety constraint formulation used within the MPC optimization
procedure, as described in Section III-D.

The dSpace DS1006 box sends the vehicle state via the
Controller Area Network bus (CANbus) to the dSpace DS1401
MicroAutoBox, which runs the MPC controller. CANbus is
the industry standard that allows microcontrollers and de-
vices to communicate with each other in vehicles. The MPC
optimization problem sends the controlled vehicle state via
CANbus back to the DS1006 box. A Microsoft Kinect is used
to obtain joint locations in 3-D space for the upper extremities
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Fig. 2. Flowchart depicting the experimental setup. The top box represents the
input and visual output modules of the system. The bottom box represents the
simulation and control modules of the system. The blue arrows represent data
transfer between the modules, and green boxes represent the method of data
transfer. The orange boxes represent the hardware components, and the red box
represents the software component of the system.

Fig. 3. Simulated environment from the driver’s view used in our experiment.
On the top right is the view from the Kinect. On the bottom are the speedometer,
tachometer, and steering/acceleration inputs.

at 20 Hz. The DS1401 box sends the vehicle state via CANbus
to the main computer, which predicts future driving behavior
in under 10 ms, and returns it to the DS1401 for the MPC
optimization procedure. The DS1401 box also sends data via
an ethernet link to the main driving simulator machine for
recording.

B. Experimental Design

The experiment was conducted over a single 2-h session.
The first hour was for data collection, and the second hour
was for evaluation. The subject was asked to keep the vehi-
cle’s speed between 105 and 110 km/h, to drive safely, and
to stay in the lane unless an emergency-forced lane depar-
ture. There was traffic in the opposite lane and also in the
driver’s lane. Programming the behavior of any traffic element
required describing either its location relative to the road or
the subject’s vehicle at any time. To maintain the tenability
of the experiment, the traffic in the same lane (except during
unexpected events described in the following) traveled at the
same longitudinal velocity as the subject’s vehicle at any time.

As a result, the subject could never reach other vehicles in the
same lane. Nevertheless, in certain circumstances, which we
describe in the following, a vehicle in the same lane travels at a
speed different than the subject’s vehicle.

The VPM for each subject was built over four 10-min
courses1 Scenario 1 consisted of a two-way two-lane roadway
with many turns and several roadblocks in the way. Scenario 2
consisted of a one-way single-lane course with 13 left and
right turns. Scenario 3 consisted of a two-way single-lane
roadway. Scenario 4 consisted of a straight two-lane highway
with occasional turns. If an accident ever occurred with another
vehicle or if the driver drove off the course, then the scenario
continued as if nothing occurred.

In order to test the effect of distraction, the subject was
distracted by requiring them to read and respond to a text
message on a phone. To keep the text messages consistent, an
Android smartphone was provided to each participant. A soft-
ware application described in [13] was used to display questions
and relay responses. There were two types of messages sent
to the driver. The first type required the driver to respond to
a question with a short answer. Example questions of the first
type are “what did you have for lunch today?” and “what did
you do last weekend?” The second type required the driver to
repeat the sentence that appeared. Example sentences are “I’m
doing fine, how about you?” or “Oh no, I forgot my tie.”

Training scenario 1 is as follows: From the start, there are
three cars in the left lane driving at 100 km/h. Whenever a
vehicle trails the subject’s car by 50 m, the vehicle reappears
300 m in front of the subject’s vehicle. Approximately 3 min
into the drive, a cow appears on the right lane of the road,
which the driver must avoid. Then, 4.5 min into the drive, a
lead car appears, which the driver can choose to overtake. After
6 min into the drive, another lead car appears, which the driver
can choose to overtake. Approximately every 40 s, the driver is
notified to respond to a text message, totaling 13 text messages.

Training scenario 2 is as follows: From the start, there are
no other cars or traffic. The driver must navigate through
13 turns, while responding to a text message every 40 s. The
driver is asked to respond to a text message in different types
of situations (straightaway, preturn, turn, and postturn), totaling
13 text messages.

Training scenario 3 is as follows: From the start, there are
three cars in the left lane driving at 100 km/h and three cars
in the right lane driving at 100 km/h. Approximately 6 min
into the drive, a lead car in the right lane appears driving at
the same speed as the subject. Then, 1.5 min later, the lead car
slows down to 36 km/h. Approximately every 40 s, the driver is
notified to respond to a text message, totaling 13 text messages.

Training scenario 4 is as follows: From the start, there are
three cars in the left lane driving at 100 km/h. There is also
a lead car, which slows down every 800 m, causing the driver
to do a lane change or stay behind the lead car at 35 km/h.
Every time the lead car trails the subject’s vehicle by 100 m, it
reappears 100 m in front of the subject. Approximately every
40 s, the driver is notified to respond to a text message. The

1The roadway and scene information can be viewed at www.purl.org/vshia/
experiment_route.

www.purl.org/vshia/experiment_route.
www.purl.org/vshia/experiment_route.
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driver is asked to respond to a text message in different types
of situations (straightaway, preturn, turn, and postturn), totaling
ten text messages.

During the second hour, there were four testing scenarios.
During the first three testing scenarios the VPM, the VIF,
and the semiautonomous controller are turned on. During
the final testing scenario, only the VPM and the VIF are
turned on. This was done in order to compute the RVIF and
PVIF metrics without the semiautonomous controller’s inter-
vention, which is purposefully constructed to prevent accidents.
Subjects were made aware when the semiautonomous con-
troller was active during the testing scenario and when it was
not active.

In order to test the semiautonomous controller on one’s daily
commute, the first three testing scenarios for the evaluation of
our autonomous framework are nearly identical to those used
during the training scenario. The only major difference being
that the set of text messages sent to the driver is different.
Testing scenario 1 is the same course as training scenario 1.
Testing scenario 2 is a similar course as training scenario 4. The
difference between testing scenario 2 and training scenario 4 is
that they contain different turns. Testing scenario 3 is the same
course as training scenario 2.

Testing scenario 4 is as follows: From the start, there are
three cars in the left lane driving at 100 km/h. Approximately
3 min into the drive, an animal suddenly appears in the roadway.
Then, 6 min later, another obstacle appears. One minute later,
a vehicle appears driving at the same speed as the subject.
Approximately every 40 s, the driver is notified to respond to
a text message. The driver is asked to respond to a text message
in different types of situations (straightaway, preturn, turn, and
postturn), totaling eight text messages.

V. EVALUATION

We ran the experiment on 24 individuals. Nineteen subjects
were between 20 and 30 years old, and five subjects were over
30 years old. There were 15 male subjects and nine female
subjects. Fifteen subjects drove at least once a week, and nine
subjects drove less frequently. The average driving experience
was 8.2 years, with a standard deviation of 7.8 years. The least
experienced driver had one year of experience, and the most
had 40 years of experience. For each subject, we allowed the
k-means algorithm to train using data from the four training
scenarios and tested our autonomous controller performance
on the data from the three testing scenarios. The data used to
construct the VPM corresponded to the environmental bounds
generated by CarSim for the next 4 s and the locations in R

3 of
the left and right shoulders, elbows, and wrists for the previous
2 s. For each cluster, we associate the predicted set of vehicle
inputs and the associated vehicle trajectory for the following
1.2 s. For this model, we fixed the number of clusters chosen
by the k-means algorithm to 100, N = 40, and N = 40. During
the three testing scenarios, the VPM was run in the loop with
the MPC controller.

The advice given to motorists who are learning to drive is
to maintain a 3-s distance between themselves and the car in
front of them while traveling at 60 mi/h, or approximately

96.6 km/h, in order to be able to stop safely [38]. Safe driving,
as a result, requires the driver to plan over a 3-s horizon.
Since, in our context, the driver was traveling at a maximum
of 110 km/h, we assumed that the driver was planning over a
4-s horizon, which we used during the clustering procedure to
determine the VPM.

Ideally, the entire previous history of the joint state up to the
current state would be used during the clustering procedure to
determine the VPM. However, computational limitations make
this untenable. We chose the previous 2-s joint localization
since it was the longest time horizon that we were able to
choose while guaranteeing the real-time performance of our
system. Similarly, the future vehicle trajectory was computed
over a 1.2-s horizon since it was the longest time horizon over
which we could plan while ensuring the real-time performance
of the MPC optimization. We plan on investigating techniques
to extend these horizons in the future. N = 40 and N = 40
were chosen to provide a consistent sampling rate between the
different sensors over the time horizons that we fixed.

A. Probability Distributions

Using our VPM, we generate probability distributions for
a driver’s future steering and future set of trajectories. Each
predicted set of trajectories, as illustrated in Figs. 4 and 5,
describes the distribution of how a particular driver behaved
in the past when in a similar scenario. For a single driver, the
distribution of driver behavior follows the road when attentive
on a curved road. When the driver is distracted on a turn, there
were instances, albeit rare, when the driver failed to make the
turn in time. The wide distribution in the straight-road-and-
attentive probability distributions arises because our current
VPM fails to distinguish intent. For example, a future left
lane change and future straight driving are clustered together,
making the set larger. When a driver is distracted on a straight
road, he drives fairly straight, as expected.

B. Qualitative Evaluation

This section presents the qualitative evaluation of our ex-
perimental setup drawn from surveying the participants. The
presurvey was completed after the four training trials and
focused on the subject’s experience with the simulator and
an evaluation of their own performance. The postsurvey was
completed after all eight trials and asked the subject to evaluate
the semiautonomous controller. The results are summarized in
Table I.

In the precontroller survey, 54% of subjects admitted re-
sponding to the text messages until it was safe, potentially
causing a problem for the training data since the distinction
between distraction could no longer be determined primarily
by the position of the hand holding the phone. In the post-
controller survey, a majority of subjects said that, due to the
semiautonomous controller, they changed their behavior either
by letting the vehicle drift closer to the lane boundary, by
driving at higher speeds, or by checking their phone more often.
The unintended consequences of this type of semiautonomous
controller on driver behavior has yet to be studied and may be
critical to the future implementation of intervening controllers.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHIA et al.: SEMIAUTONOMOUS VEHICULAR CONTROL USING DRIVER MODELING 9

Fig. 4. Sample prediction sets at the same instance in time for four scenarios (each row) for the RS model (column 1), the VPM model (column 2), and the
corresponding probability distribution used for the VPM model (column 3). The predicted sets are drawn in blue beginning at the subject’s vehicle, which is drawn
as a green box, in an environment with bounds drawn as red dots. The dotted blue line is the expected value of the trajectory from the VPM used in the VIF, and
the dotted green line is the actual trajectory of the vehicle. Other obstacles are illustrated as magenta boxes. These sets are taken from scenarios 1 and 2 in the
testing set. In column 3, the red color corresponds to a probability of 1 and blue corresponds to a probability of 0. Colors range from blue to red and represent a
probability from 0 to 1, respectively.
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Fig. 5. Sample prediction sets at the same instance in time for four scenarios (each row) for the RS model (column 1), the VPM model (column 2), and the
corresponding probability distribution used for the VPM model (column 3). The predicted sets are drawn in blue beginning at the subject’s vehicle, which is drawn
as a green box, in an environment with bounds drawn as red dots. The dotted blue line is the expected value of the trajectory from the VPM used in the VIF, and
the dotted green line is the actual trajectory of the vehicle. Other obstacles are illustrated as magenta boxes. These sets are taken from scenarios 1 and 2 in the
testing set. In column 3, the red color corresponds to a probability of 1, and blue corresponds to a probability of 0. Colors range from blue to red and represent a
probability from 0 to 1, respectively.
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TABLE I
SURVEY AND RESPONSES BY PARTICIPANTS IN THE EXPERIMENT DESCRIBED IN SECTION IV. THE PRECONTROLLER SURVEY (PRE)

WAS CONDUCTED AFTER PERFORMING THE TRAINING SCENARIOS BUT BEFORE THE TESTING SCENARIOS.
THE POSTCONTROLLER SURVEY (POST) WAS CONDUCTED AFTER THE ENTIRE EXPERIMENT

TABLE II
MEAN/STANDARD DEVIATION PERFORMANCE OF THE EMPIRICAL VPM COMPARED TO THE RS WITH RESPECT TO THE FOUR METRICS DEFINED IN

SECTION II-C FOR ALL SUBJECTS. THE METRICS AVPM AND PVPM WERE TESTED USING THE FOUR TESTING SCENARIOS WITH THE

SEMIAUTONOMOUS CONTROLLER ACTIVE. IN ORDER TO COMPUTE RVIF AND PVIF ON VEHICLE TRAJECTORIES

UNCHANGED BY THE SEMIAUTONOMOUS CONTROLLER, WE USED TESTING SCENARIO 4

Subjects also noted that the semiautonomous controller was
effective in preventing the vehicle from going off the road
and preventing collisions. In summary, although the driving
simulator lacked speed and force feedback, the participants
were still able to adapt to the system. Participants complained
that the monitor was too small and should have side screens to
provide peripheral information.

C. Evaluation of the Semiautonomous Controller

We compare the performance of our VPM to one that ignores
all prior observations and defines the VPM as the RS, using the
four metrics presented in Section II-C and shown in Table II.
This serves as an illustration of the baseline performance of
existing active safety systems. It is clear that, by incorporating
information about the driver, we can reliably predict the be-
havior of the vehicle. Figs. 4 and 5 illustrate the VPM and the
actual observed trajectory of the driver. For these experiments,
100 clusters were chosen to balance the four metrics. Depend-
ing on the application and desired accuracy or precision, the
desired number of clusters is subject to tuning. We also plan to
investigate the optimal number of clusters for each driver.

The metrics AVPM and PVPM were tested using the four
testing scenarios with the semiautonomous controller active.
While the AVPM of the VPM is not as accurate as the RS, the
PVPM of the VPM indicates that the set that the VPM outputs
is 50% smaller than its RS counterpart. In addition, the RVIF
indicates that the semiautonomous architecture intervenes dur-
ing 92% of the instances where the driver was in danger. More
importantly, the PVIF illustrates that, during 71% of the times
that the architecture relying on the VPM decided to intervene,
the driver was going to be in danger in the near future. Compare
this to the architecture that relied upon the RS, which intervened
far more often than was necessary. Once again, the RVIF and
PVIF was calculated using only testing scenario 4, which did
not have the semiautonomous controller active.

During the testing scenarios with the autonomous controller
active, the autonomous controller was always able to keep

the vehicle safe. Out of the 734 848 number of total oppor-
tunities that the autonomous controller could have chosen to
intervene, it intervened approximately 94 996 number of times,
or approximately 12.93% of the time. Fig. 6 illustrates some
instances when the controller chose to intervene. Since our
scenarios were simple, there were no circumstances in which
the autonomous controller could not find a trajectory to keep
the vehicle safe.

VI. CONCLUSION

In this paper, we have presented and implemented an ar-
chitecture for a provably safe semiautonomous controller that
predicts potential vehicle behavior and intervenes when the
vehicle is deemed unsafe. Using four metrics that we define, we
show that incorporating a driver model during the construction
of the semiautonomous controller allows for better performance
than a semiautonomous controller that treats the driver as a
disturbance. This semiautonomous framework is modular and
easily allows the use of different driver models and controllers.
Future work includes developing and implementing a better
unsupervised learning algorithm, such as hierarchical clustering
or active learning using convex programming [39], [40].

Before extending our proposed setup to a real-world system,
several issues must be considered. First, the driver model must
be able to update itself in real time as observations arrive. A
method to perform this operation was proposed in [41]. Second,
different types of driver distraction, such as those considered
in [42], may require the inclusion of additional joints such as
head position or attitude and implementing articulated tracking
systems such as those proposed in [21], [43], and [44]. Third,
incorporating strategies to predict future states of other vehicles
or obstacles in the environment, such as those proposed in [45],
[46], will be critical. Finally, taking advantage of the entire set
of predicted future trajectories for the vehicle, rather than just
the expected trajectory, by extending stochastic MPC [47] to the
nonlinear vehicle model case will be essential to improving
the overall performance of the proposed architecture.
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Fig. 6. Sample prediction sets with instances when the controller provided a change to the driver’s steering input. The color scheme in the first column is the
same as in Fig. 5, except for the gradient of magenta. The gradient from dark to bright magenta shows the position of the obstacle from 0 to 1.2 s in the future.
In the second column, the dotted red line denotes the past steering wheel angle, the solid blue line represents the future steering wheel angle, the dotted blue
line denotes the expected steering from the VPM, and the red line represents the future controller steering. The dotted red line and solid blue line are continuous
because they represent the steering wheel angle.
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These experiments were not without shortcomings. Common
subject complaints involved the system lacking tactile feedback
and that the controller was too “jerky”, which is a limitation of
current hardware. The nonlinear MPC controller has a sampling
time of 200 ms, limiting the agility of maneuvers and respond-
ing time. Recent work in [48] has reduced the sampling time
100 ms. Additional methods to improve the speed may include
using a linear time-varying vehicle model or parallelizing the
nonlinear program. When subjects were driving with the phone
in their hand, they often looked up at the road, effectively
deceiving the driver model. This combined with the limitations
of the Kinect requires an improved method of measuring driver
distraction.

In contrast to fully autonomous systems, whose widespread
adoption has been forestalled due to the inability of existing
verification tools to guarantee their safety in arbitrary situa-
tions, semiautonomous systems must address the problem of
transitioning control between the driver and an autonomous
controller. Currently, research groups such as the Revs Program
at Stanford and the Center for Automotive Research are study-
ing this problem [49]. If the vehicle hands over control to a
nonattentive driver, the entire system may be just as unsafe as
a distracted driver [50]. More troublingly, many of the partic-
ipants in our experiment reported that the controller changed
their own behavior. The unintended consequences of this type
of semiautonomous controller on driver behavior needs to be
more fully studied.
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